

Welcome to the Certbot documentation!

	Introduction
	Contributing

	How to run the client

	Understanding the client in more depth

	What is a Certificate?
	Certificates and Lineages

	Get Certbot
	About Certbot

	System Requirements

	Alternate installation methods

	User Guide
	Certbot Commands

	Getting certificates (and choosing plugins)

	Managing certificates

	Where are my certificates?

	Pre and Post Validation Hooks

	Changing the ACME Server

	Lock Files

	Configuration file

	Log Rotation

	Certbot command-line options

	Getting help

	Developer Guide
	Getting Started

	Code components and layout

	Coding style

	Use certbot.compat.os instead of os

	Mypy type annotations

	Submitting a pull request

	Asking for help

	Building the Certbot and DNS plugin snaps

	Updating the documentation

	Certbot’s dependencies

	Running the client with Docker

	Packaging Guide
	Releases

	Notes for package maintainers

	Backwards Compatibility

	Resources

	API Documentation

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Note

To get started quickly, use the interactive installation guide [https://certbot.eff.org].

Certbot is part of EFF’s effort to encrypt the entire Internet. Secure communication over the Web relies on HTTPS, which requires the use of a digital certificate that lets browsers verify the identity of web servers (e.g., is that really google.com?). Web servers obtain their certificates from trusted third parties called certificate authorities (CAs). Certbot is an easy-to-use client that fetches a certificate from Let’s Encrypt—an open certificate authority launched by the EFF, Mozilla, and others—and deploys it to a web server.

Anyone who has gone through the trouble of setting up a secure website knows what a hassle getting and maintaining a certificate is. Certbot and Let’s Encrypt can automate away the pain and let you turn on and manage HTTPS with simple commands. Using Certbot and Let’s Encrypt is free, so there’s no need to arrange payment.

How you use Certbot depends on the configuration of your web server. The best way to get started is to use our interactive guide [https://certbot.eff.org]. It generates instructions based on your configuration settings. In most cases, you’ll need root or administrator access [https://certbot.eff.org/faq/#does-certbot-require-root-administrator-privileges] to your web server to run Certbot.

Certbot is meant to be run directly on your web server, not on your personal computer. If you’re using a hosted service and don’t have direct access to your web server, you might not be able to use Certbot. Check with your hosting provider for documentation about uploading certificates or using certificates issued by Let’s Encrypt.

Certbot is a fully-featured, extensible client for the Let’s
Encrypt CA (or any other CA that speaks the ACME [https://datatracker.ietf.org/doc/html/rfc8555]
protocol) that can automate the tasks of obtaining certificates and
configuring webservers to use them. This client runs on Unix-based operating
systems.

To see the changes made to Certbot between versions please refer to our
changelog [https://github.com/certbot/certbot/blob/master/certbot/CHANGELOG.md].

Contributing

If you’d like to contribute to this project please read Developer Guide [https://certbot.eff.org/docs/contributing.html].

This project is governed by EFF’s Public Projects Code of Conduct [https://www.eff.org/pages/eppcode].

How to run the client

The easiest way to install and run Certbot is by visiting certbot.eff.org [https://certbot.eff.org/],
where you can find the correct instructions for many web server and OS
combinations. For more information, see Get Certbot [https://certbot.eff.org/docs/install.html].

Understanding the client in more depth

To understand what the client is doing in detail, it’s important to
understand the way it uses plugins. Please see the explanation of
plugins [https://certbot.eff.org/docs/using.html#plugins] in
the User Guide.

Links

Documentation: https://certbot.eff.org/docs

Software project: https://github.com/certbot/certbot

Notes for developers: https://certbot.eff.org/docs/contributing.html

Main Website: https://certbot.eff.org

Let’s Encrypt Website: https://letsencrypt.org

Community: https://community.letsencrypt.org

ACME spec: RFC 8555 [https://tools.ietf.org/html/rfc8555]

ACME working area in github (archived): https://github.com/ietf-wg-acme/acme

[image: Azure Pipelines CI status] [https://dev.azure.com/certbot/certbot/_build?definitionId=5]

System Requirements

See https://certbot.eff.org/docs/install.html#system-requirements.

What is a Certificate?

A public key or digital certificate (formerly called an SSL certificate) uses a public key
and a private key to enable secure communication between a client program (web browser, email client,
etc.) and a server over an encrypted SSL (secure socket layer) or TLS (transport layer security) connection.
The certificate is used both to encrypt the initial stage of communication (secure key exchange)
and to identify the server. The certificate
includes information about the key, information about the server identity, and the digital signature
of the certificate issuer. If the issuer is trusted by the software that initiates the communication,
and the signature is valid, then the key can be used to communicate securely with the server identified by
the certificate. Using a certificate is a good way to prevent “man-in-the-middle” attacks, in which
someone in between you and the server you think you are talking to is able to insert their own (harmful)
content.

You can use Certbot to easily obtain and configure a free certificate from Let’s Encrypt, a
joint project of EFF, Mozilla, and many other sponsors.

Certificates and Lineages

Certbot introduces the concept of a lineage, which is a collection of all the versions of a certificate
plus Certbot configuration information maintained for that certificate from
renewal to renewal. Whenever you renew a certificate, Certbot keeps the same configuration unless
you explicitly change it, for example by adding or removing domains. If you add domains, you can
either add them to an existing lineage or create
a new one.

See also:
Re-creating and Updating Existing Certificates

Get Certbot

Table of Contents

	About Certbot

	System Requirements

	Alternate installation methods

	Snap

	Running with Docker

	Pip

About Certbot

Certbot is meant to be run directly on a web server, normally by a system administrator. In most cases, running Certbot on your personal computer is not a useful option. The instructions below relate to installing and running Certbot on a server.

System administrators can use Certbot directly to request certificates; they should not allow unprivileged users to run arbitrary Certbot commands as root, because Certbot allows its user to specify arbitrary file locations and run arbitrary scripts.

Certbot is packaged for many common operating systems and web servers. Check whether
certbot (or letsencrypt) is packaged for your web server’s OS by visiting
certbot.eff.org [https://certbot.eff.org], where you will also find the correct installation instructions for
your system.

Note

Unless you have very specific requirements, we kindly suggest that you use the installation instructions for your system found at certbot.eff.org [https://certbot.eff.org].

System Requirements

Certbot currently requires Python 3.7+ running on a UNIX-like operating
system. By default, it requires root access in order to write to
/etc/letsencrypt, /var/log/letsencrypt, /var/lib/letsencrypt; to
bind to port 80 (if you use the standalone plugin) and to read and
modify webserver configurations (if you use the apache or nginx
plugins). If none of these apply to you, it is theoretically possible to run
without root privileges, but for most users who want to avoid running an ACME
client as root, either letsencrypt-nosudo [https://github.com/diafygi/letsencrypt-nosudo] or simp_le [https://github.com/zenhack/simp_le] are more appropriate choices.

The Apache plugin currently requires an OS with augeas version 1.0; currently it
supports [https://github.com/certbot/certbot/blob/master/certbot-apache/certbot_apache/_internal/constants.py]
modern OSes based on Debian, Ubuntu, Fedora, SUSE, Gentoo and Darwin.

Alternate installation methods

If you are offline or your operating system doesn’t provide a package, you can use
an alternate method for installing certbot.

Snap

Most modern Linux distributions (basically any that use systemd) can install
Certbot packaged as a snap. Snaps are available for x86_64, ARMv7 and ARMv8
architectures. The Certbot snap provides an easy way to ensure you have the
latest version of Certbot with features like automated certificate renewal
preconfigured.

You can find instructions for installing the Certbot snap at
https://certbot.eff.org/instructions by selecting your server software and then
choosing “snapd” in the “System” dropdown menu. (You should select “snapd”
regardless of your operating system, as our instructions are the same across
all systems.)

Running with Docker

Docker [https://docker.com] is an amazingly simple and quick way to obtain a
certificate. However, this mode of operation is unable to install
certificates or configure your webserver, because our installer
plugins cannot reach your webserver from inside the Docker container.

Most users should use the instructions at certbot.eff.org [https://certbot.eff.org]. You should only use
Docker if you are sure you know what you are doing and have a good reason to do
so.

You should definitely read the Where are my certificates? section, in order to
know how to manage the certificates
manually. Our ciphersuites page
provides some information about recommended ciphersuites. If none of
these make much sense to you, you should definitely use the installation method
recommended for your system at certbot.eff.org [https://certbot.eff.org], which enables you to use
installer plugins that cover both of those hard topics.

If you’re still not convinced and have decided to use this method, from
the server that the domain you’re requesting a certificate for resolves
to, install Docker [https://docs.docker.com/engine/installation/], then issue a command like the one found below. If
you are using Certbot with the Standalone plugin, you will need
to make the port it uses accessible from outside of the container by
including something like -p 80:80 or -p 443:443 on the command
line before certbot/certbot.

sudo docker run -it --rm --name certbot \
 -v "/etc/letsencrypt:/etc/letsencrypt" \
 -v "/var/lib/letsencrypt:/var/lib/letsencrypt" \
 certbot/certbot certonly

Running Certbot with the certonly command will obtain a certificate and place it in the directory
/etc/letsencrypt/live on your system. Because Certonly cannot install the certificate from
within Docker, you must install the certificate manually according to the procedure
recommended by the provider of your webserver.

There are also Docker images for each of Certbot’s DNS plugins available
at https://hub.docker.com/u/certbot which automate doing domain
validation over DNS for popular providers. To use one, just replace
certbot/certbot in the command above with the name of the image you
want to use. For example, to use Certbot’s plugin for Amazon Route 53,
you’d use certbot/dns-route53. You may also need to add flags to
Certbot and/or mount additional directories to provide access to your
DNS API credentials as specified in the DNS plugin documentation.

For more information about the layout
of the /etc/letsencrypt directory, see Where are my certificates?.

Pip

Installing Certbot through pip is only supported on a best effort basis and
when using a virtual environment. Instructions for installing Certbot through
pip can be found at https://certbot.eff.org/instructions by selecting your
server software and then choosing “pip” in the “System” dropdown menu.

User Guide

Table of Contents

	Certbot Commands

	Getting certificates (and choosing plugins)

	Apache

	Webroot

	Nginx

	Standalone

	DNS Plugins

	Manual

	Combining plugins

	Third-party plugins

	Managing certificates

	Re-creating and Updating Existing Certificates

	Changing a Certificate’s Domains

	Using ECDSA keys

	Changing existing certificates from RSA to ECDSA

	Obtaining ECDSA certificates in addition to RSA certificates

	Revoking certificates

	Revoking by account key or certificate private key

	Deleting certificates

	Safely deleting certificates

	Renewing certificates

	Modifying the Renewal Configuration of Existing Certificates

	Automated Renewals

	Setting up automated renewal

	Where are my certificates?

	Pre and Post Validation Hooks

	Changing the ACME Server

	Lock Files

	Configuration file

	Log Rotation

	Certbot command-line options

	Getting help

Certbot Commands

Certbot uses a number of different commands (also referred
to as “subcommands”) to request specific actions such as
obtaining, renewing, or revoking certificates. The most important
and commonly-used commands will be discussed throughout this
document; an exhaustive list also appears near the end of the document.

The certbot script on your web server might be named letsencrypt if your system uses an older package. Throughout the docs, whenever you see certbot, swap in the correct name as needed.

Getting certificates (and choosing plugins)

Certbot helps you achieve two tasks:

	Obtaining a certificate: automatically performing the required authentication steps to prove that you control the domain(s),
saving the certificate to /etc/letsencrypt/live/ and renewing it on a regular schedule.

	Optionally, installing that certificate to supported web servers (like Apache or nginx) and other kinds of servers. This is
done by automatically modifying the configuration of your server in order to use the certificate.

To obtain a certificate and also install it, use the certbot run command (or certbot, which is the same).

To just obtain the certificate without installing it anywhere, the certbot certonly (“certificate only”) command can be used.

Some example ways to use Certbot:

Obtain and install a certificate:
certbot

Obtain a certificate but don't install it:
certbot certonly

You may specify multiple domains with -d and obtain and
install different certificates by running Certbot multiple times:
certbot certonly -d example.com -d www.example.com
certbot certonly -d app.example.com -d api.example.com

To perform these tasks, Certbot will ask you to choose from a selection of authenticator and installer plugins. The appropriate
choice of plugins will depend on what kind of server software you are running and plan to use your certificates with.

Authenticators are plugins which automatically perform the required steps to prove that you control the domain names you’re trying
to request a certificate for. An authenticator is always required to obtain a certificate.

Installers are plugins which can automatically modify your web server’s configuration to serve your website over HTTPS, using the
certificates obtained by Certbot. An installer is only required if you want Certbot to install the certificate to your web server.

Some plugins are both authenticators and installers and it is possible to specify a distinct combination of authenticator and plugin.

	Plugin

	Auth

	Inst

	Notes

	Challenge types (and port)

	apache

	Y

	Y

	
Automates obtaining and installing a certificate with Apache.

	http-01 [https://datatracker.ietf.org/doc/html/rfc8555#section-8.3] (80)

	nginx

	Y

	Y

	
Automates obtaining and installing a certificate with Nginx.

	http-01 [https://datatracker.ietf.org/doc/html/rfc8555#section-8.3] (80)

	webroot

	Y

	N

	
Obtains a certificate by writing to the webroot directory of

an already running webserver.

	http-01 [https://datatracker.ietf.org/doc/html/rfc8555#section-8.3] (80)

	standalone

	Y

	N

	
Uses a “standalone” webserver to obtain a certificate.

Requires port 80 to be available. This is useful on

systems with no webserver, or when direct integration with

the local webserver is not supported or not desired.

	http-01 [https://datatracker.ietf.org/doc/html/rfc8555#section-8.3] (80)

	DNS plugins

	Y

	N

	
This category of plugins automates obtaining a certificate by

modifying DNS records to prove you have control over a

domain. Doing domain validation in this way is

the only way to obtain wildcard certificates from Let’s

Encrypt.

	dns-01 [https://datatracker.ietf.org/doc/html/rfc8555#section-8.4] (53)

	manual

	Y

	N

	
Obtain a certificate by manually following instructions to

perform domain validation yourself. Certificates created this

way do not support autorenewal.

Autorenewal may be enabled by providing an authentication

hook script to automate the domain validation steps.

	http-01 [https://datatracker.ietf.org/doc/html/rfc8555#section-8.3] (80) or
dns-01 [https://datatracker.ietf.org/doc/html/rfc8555#section-8.4] (53)

Under the hood, plugins use one of several ACME protocol challenges [https://datatracker.ietf.org/doc/html/rfc8555#section-8] to
prove you control a domain. The options are http-01 [https://datatracker.ietf.org/doc/html/rfc8555#section-8.3] (which uses port 80)
and dns-01 [https://datatracker.ietf.org/doc/html/rfc8555#section-8.4] (requiring configuration of a DNS server on
port 53, though that’s often not the same machine as your webserver). A few
plugins support more than one challenge type, in which case you can choose one
with --preferred-challenges.

There are also many third-party-plugins available. Below we describe in more detail
the circumstances in which each plugin can be used, and how to use it.

Apache

The Apache plugin currently supports [https://github.com/certbot/certbot/blob/master/certbot-apache/certbot_apache/_internal/entrypoint.py]
modern OSes based on Debian, Fedora, SUSE, Gentoo, CentOS and Darwin.
This automates both obtaining and installing certificates on an Apache
webserver. To specify this plugin on the command line, simply include
--apache.

Webroot

If you’re running a local webserver for which you have the ability
to modify the content being served, and you’d prefer not to stop the
webserver during the certificate issuance process, you can use the webroot
plugin to obtain a certificate by including certonly and --webroot on
the command line. In addition, you’ll need to specify --webroot-path
or -w with the top-level directory (“web root”) containing the files
served by your webserver. For example, --webroot-path /var/www/html
or --webroot-path /usr/share/nginx/html are two common webroot paths.

If you’re getting a certificate for many domains at once, the plugin
needs to know where each domain’s files are served from, which could
potentially be a separate directory for each domain. When requesting a
certificate for multiple domains, each domain will use the most recently
specified --webroot-path. So, for instance,

certbot certonly --webroot -w /var/www/example -d www.example.com -d example.com -w /var/www/other -d other.example.net -d another.other.example.net

would obtain a single certificate for all of those names, using the
/var/www/example webroot directory for the first two, and
/var/www/other for the second two.

The webroot plugin works by creating a temporary file for each of your requested
domains in ${webroot-path}/.well-known/acme-challenge. Then the Let’s Encrypt
validation server makes HTTP requests to validate that the DNS for each
requested domain resolves to the server running certbot. An example request
made to your web server would look like:

66.133.109.36 - - [05/Jan/2016:20:11:24 -0500] "GET /.well-known/acme-challenge/HGr8U1IeTW4kY_Z6UIyaakzOkyQgPr_7ArlLgtZE8SX HTTP/1.1" 200 87 "-" "Mozilla/5.0 (compatible; Let's Encrypt validation server; +https://www.letsencrypt.org)"

Note that to use the webroot plugin, your server must be configured to serve
files from hidden directories. If /.well-known is treated specially by
your webserver configuration, you might need to modify the configuration
to ensure that files inside /.well-known/acme-challenge are served by
the webserver.

Under Windows, Certbot will generate a web.config file, if one does not already exist,
in /.well-known/acme-challenge in order to let IIS serve the challenge files even if they
do not have an extension.

Nginx

The Nginx plugin should work for most configurations. We recommend backing up
Nginx configurations before using it (though you can also revert changes to
configurations with certbot --nginx rollback). You can use it by providing
the --nginx flag on the commandline.

certbot --nginx

Standalone

Use standalone mode to obtain a certificate if you don’t want to use (or don’t currently have)
existing server software. The standalone plugin does not rely on any other server
software running on the machine where you obtain the certificate.

To obtain a certificate using a “standalone” webserver, you can use the
standalone plugin by including certonly and --standalone
on the command line. This plugin needs to bind to port 80 in
order to perform domain validation, so you may need to stop your
existing webserver.

It must still be possible for your machine to accept inbound connections from
the Internet on the specified port using each requested domain name.

By default, Certbot first attempts to bind to the port for all interfaces using
IPv6 and then bind to that port using IPv4; Certbot continues so long as at
least one bind succeeds. On most Linux systems, IPv4 traffic will be routed to
the bound IPv6 port and the failure during the second bind is expected.

Use --<challenge-type>-address to explicitly tell Certbot which interface
(and protocol) to bind.

DNS Plugins

If you’d like to obtain a wildcard certificate from Let’s Encrypt or run
certbot on a machine other than your target webserver, you can use one of
Certbot’s DNS plugins.

These plugins are not included in a default Certbot installation and must be
installed separately. They are available in many OS package managers, as Docker
images, and as snaps. Visit https://certbot.eff.org to learn the best way to
use the DNS plugins on your system.

Once installed, you can find documentation on how to use each plugin at:

	certbot-dns-cloudflare [https://certbot-dns-cloudflare.readthedocs.io]

	certbot-dns-cloudxns [https://certbot-dns-cloudxns.readthedocs.io]

	certbot-dns-digitalocean [https://certbot-dns-digitalocean.readthedocs.io]

	certbot-dns-dnsimple [https://certbot-dns-dnsimple.readthedocs.io]

	certbot-dns-dnsmadeeasy [https://certbot-dns-dnsmadeeasy.readthedocs.io]

	certbot-dns-gehirn [https://certbot-dns-gehirn.readthedocs.io]

	certbot-dns-google [https://certbot-dns-google.readthedocs.io]

	certbot-dns-linode [https://certbot-dns-linode.readthedocs.io]

	certbot-dns-luadns [https://certbot-dns-luadns.readthedocs.io]

	certbot-dns-nsone [https://certbot-dns-nsone.readthedocs.io]

	certbot-dns-ovh [https://certbot-dns-ovh.readthedocs.io]

	certbot-dns-rfc2136 [https://certbot-dns-rfc2136.readthedocs.io]

	certbot-dns-route53 [https://certbot-dns-route53.readthedocs.io]

	certbot-dns-sakuracloud [https://certbot-dns-sakuracloud.readthedocs.io]

Manual

If you’d like to obtain a certificate running certbot on a machine
other than your target webserver or perform the steps for domain
validation yourself, you can use the manual plugin. While hidden from
the UI, you can use the plugin to obtain a certificate by specifying
certonly and --manual on the command line. This requires you
to copy and paste commands into another terminal session, which may
be on a different computer.

The manual plugin can use either the http or the dns challenge. You can use the --preferred-challenges option
to choose the challenge of your preference.

The http challenge will ask you to place a file with a specific name and
specific content in the /.well-known/acme-challenge/ directory directly
in the top-level directory (“web root”) containing the files served by your
webserver. In essence it’s the same as the webroot plugin, but not automated.

When using the dns challenge, certbot will ask you to place a TXT DNS
record with specific contents under the domain name consisting of the hostname
for which you want a certificate issued, prepended by _acme-challenge.

For example, for the domain example.com, a zone file entry would look like:

_acme-challenge.example.com. 300 IN TXT "gfj9Xq...Rg85nM"

Renewal with the manual plugin

Certificates created using --manual do not support automatic renewal unless
combined with an authentication hook script via --manual-auth-hook
to automatically set up the required HTTP and/or TXT challenges.

If you can use one of the other plugins which support autorenewal to create
your certificate, doing so is highly recommended.

To manually renew a certificate using --manual without hooks, repeat the same
certbot --manual command you used to create the certificate originally. As this
will require you to copy and paste new HTTP files or DNS TXT records, the command
cannot be automated with a cron job.

Combining plugins

Sometimes you may want to specify a combination of distinct authenticator and
installer plugins. To do so, specify the authenticator plugin with
--authenticator or -a and the installer plugin with --installer or
-i.

For instance, you could create a certificate using the webroot plugin
for authentication and the apache plugin for installation.

certbot run -a webroot -i apache -w /var/www/html -d example.com

Or you could create a certificate using the manual plugin for authentication
and the nginx plugin for installation. (Note that this certificate cannot
be renewed automatically.)

certbot run -a manual -i nginx -d example.com

Third-party plugins

There are also a number of third-party plugins for the client, provided by
other developers. Many are beta/experimental, but some are already in
widespread use:

	Plugin

	Auth

	Inst

	Notes

	haproxy [https://github.com/greenhost/certbot-haproxy]

	Y

	Y

	Integration with the HAProxy load balancer

	s3front [https://github.com/dlapiduz/letsencrypt-s3front]

	Y

	Y

	Integration with Amazon CloudFront distribution of S3 buckets

	gandi [https://github.com/obynio/certbot-plugin-gandi]

	Y

	N

	Obtain certificates via the Gandi LiveDNS API

	varnish [https://git.sesse.net/?p=letsencrypt-varnish-plugin]

	Y

	N

	Obtain certificates via a Varnish server

	external-auth [https://github.com/EnigmaBridge/certbot-external-auth]

	Y

	Y

	A plugin for convenient scripting

	pritunl [https://github.com/kharkevich/letsencrypt-pritunl]

	N

	Y

	Install certificates in pritunl distributed OpenVPN servers

	proxmox [https://github.com/kharkevich/letsencrypt-proxmox]

	N

	Y

	Install certificates in Proxmox Virtualization servers

	dns-standalone [https://github.com/siilike/certbot-dns-standalone]

	Y

	N

	Obtain certificates via an integrated DNS server

	dns-ispconfig [https://github.com/m42e/certbot-dns-ispconfig]

	Y

	N

	DNS Authentication using ISPConfig as DNS server

	dns-clouddns [https://github.com/vshosting/certbot-dns-clouddns]

	Y

	N

	DNS Authentication using CloudDNS API

	dns-lightsail [https://github.com/noi/certbot-dns-lightsail]

	Y

	N

	DNS Authentication using Amazon Lightsail DNS API

	dns-inwx [https://github.com/oGGy990/certbot-dns-inwx/]

	Y

	Y

	DNS Authentication for INWX through the XML API

	dns-azure [https://github.com/binkhq/certbot-dns-azure]

	Y

	N

	DNS Authentication using Azure DNS

	dns-godaddy [https://github.com/miigotu/certbot-dns-godaddy]

	Y

	N

	DNS Authentication using Godaddy DNS

	njalla [https://github.com/chaptergy/certbot-dns-njalla]

	Y

	N

	DNS Authentication for njalla

	DuckDNS [https://github.com/infinityofspace/certbot_dns_duckdns]

	Y

	N

	DNS Authentication for DuckDNS

	Porkbun [https://github.com/infinityofspace/certbot_dns_porkbun]

	Y

	N

	DNS Authentication for Porkbun

	Infomaniak [https://github.com/Infomaniak/certbot-dns-infomaniak]

	Y

	N

	DNS Authentication using Infomaniak Domains API

If you’re interested, you can also write your own plugin.

Managing certificates

To view a list of the certificates Certbot knows about, run
the certificates subcommand:

certbot certificates

This returns information in the following format:

Found the following certificates:
 Certificate Name: example.com
 Domains: example.com, www.example.com
 Expiry Date: 2017-02-19 19:53:00+00:00 (VALID: 30 days)
 Certificate Path: /etc/letsencrypt/live/example.com/fullchain.pem
 Key Type: RSA
 Private Key Path: /etc/letsencrypt/live/example.com/privkey.pem

Certificate Name shows the name of the certificate. Pass this name
using the --cert-name flag to specify a particular certificate for the run,
certonly, certificates, renew, and delete commands. Example:

certbot certonly --cert-name example.com

Re-creating and Updating Existing Certificates

You can use certonly or run subcommands to request
the creation of a single new certificate even if you already have an
existing certificate with some of the same domain names.

If a certificate is requested with run or certonly specifying a
certificate name that already exists, Certbot updates
the existing certificate. Otherwise a new certificate
is created and assigned the specified name.

The --force-renewal, --duplicate, and --expand options
control Certbot’s behavior when re-creating
a certificate with the same name as an existing certificate.
If you don’t specify a requested behavior, Certbot may ask you what you intended.

--force-renewal tells Certbot to request a new certificate
with the same domains as an existing certificate. Each domain
must be explicitly specified via -d. If successful, this certificate
is saved alongside the earlier one and symbolic links (the “live”
reference) will be updated to point to the new certificate. This is a
valid method of renewing a specific individual
certificate.

--duplicate tells Certbot to create a separate, unrelated certificate
with the same domains as an existing certificate. This certificate is
saved completely separately from the prior one. Most users will not
need to issue this command in normal circumstances.

--expand tells Certbot to update an existing certificate with a new
certificate that contains all of the old domains and one or more additional
new domains. With the --expand option, use the -d option to specify
all existing domains and one or more new domains.

Example:

certbot --expand -d existing.com,example.com,newdomain.com

If you prefer, you can specify the domains individually like this:

certbot --expand -d existing.com -d example.com -d newdomain.com

Consider using --cert-name instead of --expand, as it gives more control
over which certificate is modified and it lets you remove domains as well as adding them.

--allow-subset-of-names tells Certbot to continue with certificate generation if
only some of the specified domain authorizations can be obtained. This may
be useful if some domains specified in a certificate no longer point at this
system.

Whenever you obtain a new certificate in any of these ways, the new
certificate exists alongside any previously obtained certificates, whether
or not the previous certificates have expired. The generation of a new
certificate counts against several rate limits that are intended to prevent
abuse of the ACME protocol, as described
here [https://letsencrypt.org/docs/rate-limits/].

Changing a Certificate’s Domains

The --cert-name flag can also be used to modify the domains a certificate contains,
by specifying new domains using the -d or --domains flag. If certificate example.com
previously contained example.com and www.example.com, it can be modified to only
contain example.com by specifying only example.com with the -d or --domains flag. Example:

certbot certonly --cert-name example.com -d example.com

The same format can be used to expand the set of domains a certificate contains, or to
replace that set entirely:

certbot certonly --cert-name example.com -d example.org,www.example.org

Using ECDSA keys

As of version 1.10, Certbot supports two types of private key algorithms:
rsa and ecdsa. The type of key used by Certbot can be controlled
through the --key-type option. You can also use the --elliptic-curve
option to control the curve used in ECDSA certificates.

Warning

If you obtain certificates using ECDSA keys, you should be careful
not to downgrade your Certbot installation since ECDSA keys are not
supported by older versions of Certbot. Downgrades like this are possible if
you switch from something like the snaps or pip to packages
provided by your operating system which often lag behind.

Changing existing certificates from RSA to ECDSA

Unless you are aware that you need to support very old HTTPS clients that are
not supported by most sites, you can safely just transition your site to use
ECDSA keys instead of RSA keys. To accomplish this if you have existing
certificates managed by Certbot, you may freely change the certificate to a new
private key.

If you want to use ECDSA keys for all certificates in the future, you can
simply add the following line to Certbot’s configuration file

key-type = ecdsa

After this option is set, newly obtained certificates will use ECDSA keys. This
includes certificates managed by Certbot that previously used RSA keys.

If you want to change a single certificate to use ECDSA keys, you’ll need to
issue a new Certbot command setting --key-type ecdsa on the command line
like

certbot renew --key-type ecdsa --cert-name example.com --force-renewal

Obtaining ECDSA certificates in addition to RSA certificates

When Certbot configures the certificates it obtains with Apache or Nginx, all
HTTPS clients that we try to support can use certificates with ECDSA keys. If,
however, you are aware of having a specific need to support very old TLS
clients, you may want to obtain both ECDSA and RSA certificates for the same
domains. Certbot can only configure Apache or Nginx to use a single
certificate, however, you could manually configure your software to use the
different certificates depending on your needs.

When obtaining both ECDSA and RSA certificates for the same domains with
Certbot, we recommend using the --cert-name option to give your
certificates names so that you can easily identify them. For instance, you may
want to append “ecdsa” to the name of your ECDSA certificate by using a command
like

certbot certonly --key-type ecdsa --cert-name example.com-ecdsa

Revoking certificates

If you need to revoke a certificate, use the revoke subcommand to do so.

A certificate may be revoked by providing its name (see certbot certificates) or by providing
its path directly:

certbot revoke --cert-name example.com

certbot revoke --cert-path /etc/letsencrypt/live/example.com/cert.pem

If the certificate being revoked was obtained via the --staging, --test-cert or a non-default --server flag,
that flag must be passed to the revoke subcommand.

Note

After revocation, Certbot will (by default) ask whether you want to delete the certificate.
Unless deleted, Certbot will try to renew revoked certificates the next time certbot renew runs.

You can also specify the reason for revoking your certificate by using the reason flag.
Reasons include unspecified which is the default, as well as keycompromise,
affiliationchanged, superseded, and cessationofoperation:

certbot revoke --cert-name example.com --reason keycompromise

Revoking by account key or certificate private key

By default, Certbot will try revoke the certificate using your ACME account key. If the certificate was created from
the same ACME account, the revocation will be successful.

If you instead have the corresponding private key file to the certificate you wish to revoke, use --key-path to perform the
revocation from any ACME account:

certbot revoke --cert-path /etc/letsencrypt/live/example.com/cert.pem --key-path /etc/letsencrypt/live/example.com/privkey.pem

Deleting certificates

If you need to delete a certificate, use the delete subcommand.

Note

Read this and the Safely deleting certificates sections carefully. This is an irreversible operation and must
be done with care.

Note

Do not manually delete certificate files from inside /etc/letsencrypt/. Always use the delete subcommand.

A certificate may be deleted by providing its name with --cert-name. You may find its name using certbot certificates.

Otherwise, you will be prompted to choose one or more
certificates to delete:

certbot delete --cert-name example.com
or to choose from a list:
certbot delete

Safely deleting certificates

Deleting a certificate without following the proper steps can result in a non-functioning server. To safely delete a
certificate, follow all the steps below to make sure that references to a certificate are removed from the configuration
of any installed server software (Apache, nginx, Postfix, etc) before deleting the certificate.

To explain further, when installing a certificate, Certbot modifies Apache or nginx’s configuration to load the certificate
and its private key from the /etc/letsencrypt/live/ directory. Before deleting a certificate, it is necessary to undo
that modification, by removing any references to the certificate from the webserver’s configuration files.

Follow these steps to safely delete a certificate:

	Find all references to the certificate (substitute example.com in the command for the name of the certificate
you wish to delete):

sudo bash -c 'grep -R live/example.com /etc/{nginx,httpd,apache2}'

If there are no references found, skip directly to Step 4.

If some references are found, they will look something like:

/etc/apache2/sites-available/000-default-le-ssl.conf:SSLCertificateFile /etc/letsencrypt/live/example.com/fullchain.pem
/etc/apache2/sites-available/000-default-le-ssl.conf:SSLCertificateKeyFile /etc/letsencrypt/live/example.com/privkey.pem

	You will need a self-signed certificate to replace the certificate you are deleting. The following command will generate one
for you, saving the certificate at /etc/letsencrypt/self-signed-cert.pem and its private key at
/etc/letsencrypt/self-signed-privkey.pem:

sudo openssl req -nodes -batch -x509 -newkey rsa:2048 -keyout /etc/letsencrypt/self-signed-privkey.pem -out /etc/letsencrypt/self-signed-cert.pem -days 356

	For each reference found in Step 1, open the file in a text editor and replace the reference to the existing
certificate with a reference to the self-signed certificate.

Continuing from the previous example, you would open /etc/apache2/sites-available/000-default-le-ssl.conf in a text editor
and modify the two matching lines of text to instead say:

SSLCertificateFile /etc/letsencrypt/self-signed-cert.pem
SSLCertificateKeyFile /etc/letsencrypt/self-signed-privkey.pem

	It is now safe to delete the certificate. Do so by running:

sudo certbot delete --cert-name example.com

Renewing certificates

Note

Let’s Encrypt CA issues short-lived certificates (90
days). Make sure you renew the certificates at least once in 3
months.

See also

Most Certbot installations come with automatic
renewal out of the box. See Automated Renewals for more details.

See also

Users of the Manual plugin should note that --manual certificates
will not renew automatically, unless combined with authentication hook scripts.
See Renewal with the manual plugin.

As of version 0.10.0, Certbot supports a renew action to check
all installed certificates for impending expiry and attempt to renew
them. The simplest form is simply

certbot renew

This command attempts to renew any previously-obtained certificates that
expire in less than 30 days. The same plugin and options that were used
at the time the certificate was originally issued will be used for the
renewal attempt, unless you specify other plugins or options. Unlike certonly, renew acts on
multiple certificates and always takes into account whether each one is near
expiry. Because of this, renew is suitable (and designed) for automated use,
to allow your system to automatically renew each certificate when appropriate.
Since renew only renews certificates that are near expiry it can be
run as frequently as you want - since it will usually take no action.

The renew command includes hooks for running commands or scripts before or after a certificate is
renewed. For example, if you have a single certificate obtained using
the standalone plugin, you might need to stop the webserver
before renewing so standalone can bind to the necessary ports, and
then restart it after the plugin is finished. Example:

certbot renew --pre-hook "service nginx stop" --post-hook "service nginx start"

If a hook exits with a non-zero exit code, the error will be printed
to stderr but renewal will be attempted anyway. A failing hook
doesn’t directly cause Certbot to exit with a non-zero exit code, but
since Certbot exits with a non-zero exit code when renewals fail, a
failed hook causing renewal failures will indirectly result in a
non-zero exit code. Hooks will only be run if a certificate is due for
renewal, so you can run the above command frequently without
unnecessarily stopping your webserver.

When Certbot detects that a certificate is due for renewal, --pre-hook
and --post-hook hooks run before and after each attempt to renew it.
If you want your hook to run only after a successful renewal, use
--deploy-hook in a command like this.

certbot renew --deploy-hook /path/to/deploy-hook-script

You can also specify hooks by placing files in subdirectories of Certbot’s
configuration directory. Assuming your configuration directory is
/etc/letsencrypt, any executable files found in
/etc/letsencrypt/renewal-hooks/pre,
/etc/letsencrypt/renewal-hooks/deploy, and
/etc/letsencrypt/renewal-hooks/post will be run as pre, deploy, and post
hooks respectively when any certificate is renewed with the renew
subcommand. These hooks are run in alphabetical order and are not run for other
subcommands. (The order the hooks are run is determined by the byte value of
the characters in their filenames and is not dependent on your locale.)

Hooks specified in the command line, configuration file, or renewal configuration files are
run as usual after running all hooks in these directories. One minor exception
to this is if a hook specified elsewhere is simply the path to an executable
file in the hook directory of the same type (e.g. your pre-hook is the path to
an executable in /etc/letsencrypt/renewal-hooks/pre), the file is not run a
second time. You can stop Certbot from automatically running executables found
in these directories by including --no-directory-hooks on the command line.

More information about hooks can be found by running
certbot --help renew.

If you’re sure that this command executes successfully without human
intervention, you can add the command to crontab (since certificates
are only renewed when they’re determined to be near expiry, the command
can run on a regular basis, like every week or every day). In that case,
you are likely to want to use the -q or --quiet quiet flag to
silence all output except errors.

If you are manually renewing all of your certificates, the
--force-renewal flag may be helpful; it causes the expiration time of
the certificate(s) to be ignored when considering renewal, and attempts to
renew each and every installed certificate regardless of its age. (This
form is not appropriate to run daily because each certificate will be
renewed every day, which will quickly run into the certificate authority
rate limit.)

Note that options provided to certbot renew will apply to
every certificate for which renewal is attempted; for example,
certbot renew --rsa-key-size 4096 would try to replace every
near-expiry certificate with an equivalent certificate using a 4096-bit
RSA public key. If a certificate is successfully renewed using
specified options, those options will be saved and used for future
renewals of that certificate.

An alternative form that provides for more fine-grained control over the
renewal process (while renewing specified certificates one at a time),
is certbot certonly with the complete set of subject domains of
a specific certificate specified via -d flags. You may also want to
include the -n or --noninteractive flag to prevent blocking on
user input (which is useful when running the command from cron).

certbot certonly -n -d example.com -d www.example.com

All of the domains covered by the certificate must be specified in
this case in order to renew and replace the old certificate rather
than obtaining a new one; don’t forget any www. domains! Specifying
a subset of the domains creates a new, separate certificate containing
only those domains, rather than replacing the original certificate.
When run with a set of domains corresponding to an existing certificate,
the certonly command attempts to renew that specific certificate.

Please note that the CA will send notification emails to the address
you provide if you do not renew certificates that are about to expire.

Certbot is working hard to improve the renewal process, and we
apologize for any inconvenience you encounter in integrating these
commands into your individual environment.

Note

certbot renew exit status will only be 1 if a renewal attempt failed.
This means certbot renew exit status will be 0 if no certificate needs to be updated.
If you write a custom script and expect to run a command only after a certificate was actually renewed
you will need to use the --deploy-hook since the exit status will be 0 both on successful renewal
and when renewal is not necessary.

Modifying the Renewal Configuration of Existing Certificates

When creating a certificate, Certbot will keep track of all of the relevant options chosen by the user. At renewal
time, Certbot will remember these options and apply them once again.

Sometimes, you may encounter the need to change some of these options for future certificate renewals. To achieve this,
you will need to perform the following steps:

	Perform a dry run renewal with the amended options on the command line. This allows you to confirm that the change
is valid and will result in successful future renewals.

	If the dry run is successful, perform a live renewal of the certificate. This will persist the change for future
renewals. If the certificate is not yet due to expire, you will need to force a renewal using --force-renewal.

Note

Rate limits from the certificate authority may prevent you from performing multiple renewals in a short
period of time. It is strongly recommended to perform the second step only once, when you have decided on what
options should change.

As a practical example, if you were using the webroot authenticator and had relocated your website to another directory,
you would need to change the --webroot-path to the new directory. Following the above advice:

	Perform a dry-run renewal of the individual certificate with the amended options:

certbot renew --cert-name example.com --webroot-path /path/to/new/location --dry-run

	If the dry-run was successful, make the change permanent by performing a live renewal of the certificate with the
amended options, including --force-renewal:

certbot renew --cert-name example.com --webroot-path /path/to/new/location --force-renewal

--cert-name selects the particular certificate to be modified. Without this option, all certificates will be selected.

--webroot-path is the option intended to be changed. All other previously selected options will be kept the same
and do not need to be included in the command.

For advanced certificate management tasks, it is also possible to manually modify the certificate’s renewal configuration
file, but this is discouraged since it can easily break Certbot’s ability to renew your certificates. These renewal
configuration files are located at /etc/letsencrypt/renewal/CERTNAME.conf. If you choose to modify the renewal
configuration file we advise you to make a backup of the file beforehand and test its validity with the certbot renew --dry-run command.

Warning

Manually modifying files under /etc/letsencrypt/renewal/ can damage them if done improperly and we do not recommend doing so.

Automated Renewals

Most Certbot installations come with automatic renewals preconfigured. This
is done by means of a scheduled task which runs certbot renew periodically.

If you are unsure whether you need to configure automated renewal:

	Review the instructions for your system and installation method at
https://certbot.eff.org/instructions. They will describe how to set up a scheduled task,
if necessary. If no step is listed, your system comes with automated renewal pre-installed,
and you should not need to take any additional actions.

	On Linux and BSD, you can check to see if your installation method has pre-installed a timer
for you. To do so, look for the certbot renew command in either your system’s crontab
(typically /etc/crontab or /etc/cron.*/*) or systemd timers (systemctl list-timers).

	If you’re still not sure, you can configure automated renewal manually by following the steps
in the next section. Certbot has been carefully engineered to handle the case where both manual
automated renewal and pre-installed automated renewal are set up.

Setting up automated renewal

If you think you may need to set up automated renewal, follow these instructions to set up a
scheduled task to automatically renew your certificates in the background. If you are unsure
whether your system has a pre-installed scheduled task for Certbot, it is safe to follow these
instructions to create one.

Note

If you’re using Windows, these instructions are not neccessary as Certbot on Windows comes with
a scheduled task for automated renewal pre-installed.

If you are using macOS and installed Certbot using Homebrew, follow the instructions at
https://certbot.eff.org/instructions to set up automated renewal. The instructions below
are not applicable on macOS.

Run the following line, which will add a cron job to /etc/crontab:

SLEEPTIME=$(awk 'BEGIN{srand(); print int(rand()*(3600+1))}'); echo "0 0,12 * * * root sleep $SLEEPTIME && certbot renew -q" | sudo tee -a /etc/crontab > /dev/null

If you needed to stop your webserver to run Certbot, you’ll want to
add pre and post hooks to stop and start your webserver automatically.
For example, if your webserver is HAProxy, run the following commands to create the hook files
in the appropriate directory:

sudo sh -c 'printf "#!/bin/sh\nservice haproxy stop\n" > /etc/letsencrypt/renewal-hooks/pre/haproxy.sh'
sudo sh -c 'printf "#!/bin/sh\nservice haproxy start\n" > /etc/letsencrypt/renewal-hooks/post/haproxy.sh'
sudo chmod 755 /etc/letsencrypt/renewal-hooks/pre/haproxy.sh
sudo chmod 755 /etc/letsencrypt/renewal-hooks/post/haproxy.sh

Congratulations, Certbot will now automatically renew your certificates in the background.

If you are interested in learning more about how Certbot renews your certificates, see the
Renewing certificates section above.

Where are my certificates?

All generated keys and issued certificates can be found in
/etc/letsencrypt/live/$domain, where $domain is the certificate
name (see the note below). Rather than copying, please point your (web)
server configuration directly to those files (or create symlinks).
During the renewal, /etc/letsencrypt/live is updated with the latest
necessary files.

Note

The certificate name $domain used in the path /etc/letsencrypt/live/$domain
follows this convention:

	it is the name given to --cert-name,

	if --cert-name is not set by the user it is the first domain given to
--domains,

	if the first domain is a wildcard domain (eg. *.example.com) the
certificate name will be example.com,

	if a name collision would occur with a certificate already named example.com,
the new certificate name will be constructed using a numerical sequence
as example.com-001.

For historical reasons, the containing directories are created with
permissions of 0700 meaning that certificates are accessible only
to servers that run as the root user. If you will never downgrade
to an older version of Certbot, then you can safely fix this using
chmod 0755 /etc/letsencrypt/{live,archive}.

For servers that drop root privileges before attempting to read the
private key file, you will also need to use chgrp and chmod
0640 to allow the server to read
/etc/letsencrypt/live/$domain/privkey.pem.

Note

/etc/letsencrypt/archive and /etc/letsencrypt/keys
contain all previous keys and certificates, while
/etc/letsencrypt/live symlinks to the latest versions.

The following files are available:

	privkey.pem
	Private key for the certificate.

Warning

This must be kept secret at all times! Never share
it with anyone, including Certbot developers. You cannot
put it into a safe, however - your server still needs to access
this file in order for SSL/TLS to work.

Note

As of Certbot version 0.29.0, private keys for new certificate
default to 0600. Any changes to the group mode or group owner (gid)
of this file will be preserved on renewals.

This is what Apache needs for SSLCertificateKeyFile [https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslcertificatekeyfile],
and Nginx for ssl_certificate_key [https://nginx.org/en/docs/http/ngx_http_ssl_module.html#ssl_certificate_key].

	fullchain.pem
	All certificates, including server certificate (aka leaf certificate or
end-entity certificate). The server certificate is the first one in this file,
followed by any intermediates.

This is what Apache >= 2.4.8 needs for SSLCertificateFile [https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslcertificatefile],
and what Nginx needs for ssl_certificate [https://nginx.org/en/docs/http/ngx_http_ssl_module.html#ssl_certificate].

	cert.pem and chain.pem (less common)
	cert.pem contains the server certificate by itself, and
chain.pem contains the additional intermediate certificate or
certificates that web browsers will need in order to validate the
server certificate. If you provide one of these files to your web
server, you must provide both of them, or some browsers will show
“This Connection is Untrusted” errors for your site, some of the time [https://whatsmychaincert.com/].

Apache < 2.4.8 needs these for SSLCertificateFile [https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslcertificatefile].
and SSLCertificateChainFile [https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslcertificatechainfile],
respectively.

If you’re using OCSP stapling with Nginx >= 1.3.7, chain.pem should be
provided as the ssl_trusted_certificate [https://nginx.org/en/docs/http/ngx_http_ssl_module.html#ssl_trusted_certificate]
to validate OCSP responses.

Note

All files are PEM-encoded.
If you need other format, such as DER or PFX, then you
could convert using openssl. You can automate that with
--deploy-hook if you’re using automatic renewal.

Pre and Post Validation Hooks

Certbot allows for the specification of pre and post validation hooks when run
in manual mode. The flags to specify these scripts are --manual-auth-hook
and --manual-cleanup-hook respectively and can be used as follows:

certbot certonly --manual --manual-auth-hook /path/to/http/authenticator.sh --manual-cleanup-hook /path/to/http/cleanup.sh -d secure.example.com

This will run the authenticator.sh script, attempt the validation, and then run
the cleanup.sh script. Additionally certbot will pass relevant environment
variables to these scripts:

	CERTBOT_DOMAIN: The domain being authenticated

	CERTBOT_VALIDATION: The validation string

	CERTBOT_TOKEN: Resource name part of the HTTP-01 challenge (HTTP-01 only)

	CERTBOT_REMAINING_CHALLENGES: Number of challenges remaining after the current challenge

	CERTBOT_ALL_DOMAINS: A comma-separated list of all domains challenged for the current certificate

Additionally for cleanup:

	CERTBOT_AUTH_OUTPUT: Whatever the auth script wrote to stdout

Example usage for HTTP-01:

certbot certonly --manual --preferred-challenges=http --manual-auth-hook /path/to/http/authenticator.sh --manual-cleanup-hook /path/to/http/cleanup.sh -d secure.example.com

/path/to/http/authenticator.sh

#!/bin/bash
echo $CERTBOT_VALIDATION > /var/www/htdocs/.well-known/acme-challenge/$CERTBOT_TOKEN

/path/to/http/cleanup.sh

#!/bin/bash
rm -f /var/www/htdocs/.well-known/acme-challenge/$CERTBOT_TOKEN

Example usage for DNS-01 (Cloudflare API v4) (for example purposes only, do not use as-is)

certbot certonly --manual --preferred-challenges=dns --manual-auth-hook /path/to/dns/authenticator.sh --manual-cleanup-hook /path/to/dns/cleanup.sh -d secure.example.com

/path/to/dns/authenticator.sh

#!/bin/bash

Get your API key from https://www.cloudflare.com/a/account/my-account
API_KEY="your-api-key"
EMAIL="your.email@example.com"

Strip only the top domain to get the zone id
DOMAIN=$(expr match "$CERTBOT_DOMAIN" '.*\.\(.*\..*\)')

Get the Cloudflare zone id
ZONE_EXTRA_PARAMS="status=active&page=1&per_page=20&order=status&direction=desc&match=all"
ZONE_ID=$(curl -s -X GET "https://api.cloudflare.com/client/v4/zones?name=$DOMAIN&$ZONE_EXTRA_PARAMS" \
 -H "X-Auth-Email: $EMAIL" \
 -H "X-Auth-Key: $API_KEY" \
 -H "Content-Type: application/json" | python -c "import sys,json;print(json.load(sys.stdin)['result'][0]['id'])")

Create TXT record
CREATE_DOMAIN="_acme-challenge.$CERTBOT_DOMAIN"
RECORD_ID=$(curl -s -X POST "https://api.cloudflare.com/client/v4/zones/$ZONE_ID/dns_records" \
 -H "X-Auth-Email: $EMAIL" \
 -H "X-Auth-Key: $API_KEY" \
 -H "Content-Type: application/json" \
 --data '{"type":"TXT","name":"'"$CREATE_DOMAIN"'","content":"'"$CERTBOT_VALIDATION"'","ttl":120}' \
 | python -c "import sys,json;print(json.load(sys.stdin)['result']['id'])")
Save info for cleanup
if [! -d /tmp/CERTBOT_$CERTBOT_DOMAIN];then
 mkdir -m 0700 /tmp/CERTBOT_$CERTBOT_DOMAIN
fi
echo $ZONE_ID > /tmp/CERTBOT_$CERTBOT_DOMAIN/ZONE_ID
echo $RECORD_ID > /tmp/CERTBOT_$CERTBOT_DOMAIN/RECORD_ID

Sleep to make sure the change has time to propagate over to DNS
sleep 25

/path/to/dns/cleanup.sh

#!/bin/bash

Get your API key from https://www.cloudflare.com/a/account/my-account
API_KEY="your-api-key"
EMAIL="your.email@example.com"

if [-f /tmp/CERTBOT_$CERTBOT_DOMAIN/ZONE_ID]; then
 ZONE_ID=$(cat /tmp/CERTBOT_$CERTBOT_DOMAIN/ZONE_ID)
 rm -f /tmp/CERTBOT_$CERTBOT_DOMAIN/ZONE_ID
fi

if [-f /tmp/CERTBOT_$CERTBOT_DOMAIN/RECORD_ID]; then
 RECORD_ID=$(cat /tmp/CERTBOT_$CERTBOT_DOMAIN/RECORD_ID)
 rm -f /tmp/CERTBOT_$CERTBOT_DOMAIN/RECORD_ID
fi

Remove the challenge TXT record from the zone
if [-n "${ZONE_ID}"]; then
 if [-n "${RECORD_ID}"]; then
 curl -s -X DELETE "https://api.cloudflare.com/client/v4/zones/$ZONE_ID/dns_records/$RECORD_ID" \
 -H "X-Auth-Email: $EMAIL" \
 -H "X-Auth-Key: $API_KEY" \
 -H "Content-Type: application/json"
 fi
fi

Changing the ACME Server

By default, Certbot uses Let’s Encrypt’s production server at
https://acme-v02.api.letsencrypt.org/directory. You can tell Certbot to use a
different CA by providing --server on the command line or in a
configuration file with the URL of the server’s
ACME directory. For example, if you would like to use Let’s Encrypt’s
staging server, you would add --server
https://acme-staging-v02.api.letsencrypt.org/directory to the command line.

If you use --server to specify an ACME CA that implements the standardized
version of the spec, you may be able to obtain a certificate for a
wildcard domain. Some CAs (such as Let’s Encrypt) require that domain
validation for wildcard domains must be done through modifications to
DNS records which means that the dns-01 [https://datatracker.ietf.org/doc/html/rfc8555#section-8.4] challenge type must be used. To
see a list of Certbot plugins that support this challenge type and how
to use them, see plugins.

Lock Files

When processing a validation Certbot writes a number of lock files on your system
to prevent multiple instances from overwriting each other’s changes. This means
that by default two instances of Certbot will not be able to run in parallel.

Since the directories used by Certbot are configurable, Certbot
will write a lock file for all of the directories it uses. This include Certbot’s
--work-dir, --logs-dir, and --config-dir. By default these are
/var/lib/letsencrypt, /var/log/letsencrypt, and /etc/letsencrypt
respectively. Additionally if you are using Certbot with Apache or nginx it will
lock the configuration folder for that program, which are typically also in the
/etc directory.

Note that these lock files will only prevent other instances of Certbot from
using those directories, not other processes. If you’d like to run multiple
instances of Certbot simultaneously you should specify different directories
as the --work-dir, --logs-dir, and --config-dir for each instance
of Certbot that you would like to run.

Configuration file

Certbot accepts a global configuration file that applies its options to all invocations
of Certbot. Certificate specific configuration choices should be set in the .conf
files that can be found in /etc/letsencrypt/renewal.

By default no cli.ini file is created (though it may exist already if you installed Certbot
via a package manager, for instance).
After creating one it is possible to specify the location of this configuration file with
certbot --config cli.ini (or shorter -c cli.ini). An
example configuration file is shown below:

This is an example of the kind of things you can do in a configuration file.
All flags used by the client can be configured here. Run Certbot with
"--help" to learn more about the available options.
#
Note that these options apply automatically to all use of Certbot for
obtaining or renewing certificates, so options specific to a single
certificate on a system with several certificates should not be placed
here.

Use ECC for the private key
key-type = ecdsa
elliptic-curve = secp384r1

Use a 4096 bit RSA key instead of 2048
rsa-key-size = 4096

Uncomment and update to register with the specified e-mail address
email = foo@example.com

Uncomment to use the standalone authenticator on port 443
authenticator = standalone

Uncomment to use the webroot authenticator. Replace webroot-path with the
path to the public_html / webroot folder being served by your web server.
authenticator = webroot
webroot-path = /usr/share/nginx/html

Uncomment to automatically agree to the terms of service of the ACME server
agree-tos = true

An example of using an alternate ACME server that uses EAB credentials
server = https://acme.sectigo.com/v2/InCommonRSAOV
eab-kid = somestringofstuffwithoutquotes
eab-hmac-key = yaddayaddahexhexnotquoted

By default, the following locations are searched:

	/etc/letsencrypt/cli.ini

	$XDG_CONFIG_HOME/letsencrypt/cli.ini (or
~/.config/letsencrypt/cli.ini if $XDG_CONFIG_HOME is not
set).

Since this configuration file applies to all invocations of certbot it is incorrect
to list domains in it. Listing domains in cli.ini may prevent renewal from working.
Additionally due to how arguments in cli.ini are parsed, options which wish to
not be set should not be listed. Options set to false will instead be read
as being set to true by older versions of Certbot, since they have been listed
in the config file.

Log Rotation

By default certbot stores status logs in /var/log/letsencrypt. By default
certbot will begin rotating logs once there are 1000 logs in the log directory.
Meaning that once 1000 files are in /var/log/letsencrypt Certbot will delete
the oldest one to make room for new logs. The number of subsequent logs can be
changed by passing the desired number to the command line flag
--max-log-backups. Setting this flag to 0 disables log rotation entirely,
causing certbot to always append to the same log file.

Note

Some distributions, including Debian and Ubuntu, disable
certbot’s internal log rotation in favor of a more traditional
logrotate script. If you are using a distribution’s packages and
want to alter the log rotation, check /etc/logrotate.d/ for a
certbot rotation script.

Certbot command-line options

Certbot supports a lot of command line options. Here’s the full list, from
certbot --help all:

usage:
 certbot [SUBCOMMAND] [options] [-d DOMAIN] [-d DOMAIN] ...

Certbot can obtain and install HTTPS/TLS/SSL certificates. By default,
it will attempt to use a webserver both for obtaining and installing the
certificate. The most common SUBCOMMANDS and flags are:

obtain, install, and renew certificates:
 (default) run Obtain & install a certificate in your current webserver
 certonly Obtain or renew a certificate, but do not install it
 renew Renew all previously obtained certificates that are near expiry
 enhance Add security enhancements to your existing configuration
 -d DOMAINS Comma-separated list of domains to obtain a certificate for

 --apache Use the Apache plugin for authentication & installation
 --standalone Run a standalone webserver for authentication
 --nginx Use the Nginx plugin for authentication & installation
 --webroot Place files in a server's webroot folder for authentication
 --manual Obtain certificates interactively, or using shell script hooks

 -n Run non-interactively
 --test-cert Obtain a test certificate from a staging server
 --dry-run Test "renew" or "certonly" without saving any certificates to disk

manage certificates:
 certificates Display information about certificates you have from Certbot
 revoke Revoke a certificate (supply --cert-name or --cert-path)
 delete Delete a certificate (supply --cert-name)

manage your account:
 register Create an ACME account
 unregister Deactivate an ACME account
 update_account Update an ACME account
 show_account Display account details
 --agree-tos Agree to the ACME server's Subscriber Agreement
 -m EMAIL Email address for important account notifications

optional arguments:
 -h, --help show this help message and exit
 -c CONFIG_FILE, --config CONFIG_FILE
 path to config file (default: /etc/letsencrypt/cli.ini
 and ~/.config/letsencrypt/cli.ini)
 -v, --verbose This flag can be used multiple times to incrementally
 increase the verbosity of output, e.g. -vvv. (default:
 0)
 --max-log-backups MAX_LOG_BACKUPS
 Specifies the maximum number of backup logs that
 should be kept by Certbot's built in log rotation.
 Setting this flag to 0 disables log rotation entirely,
 causing Certbot to always append to the same log file.
 (default: 1000)
 -n, --non-interactive, --noninteractive
 Run without ever asking for user input. This may
 require additional command line flags; the client will
 try to explain which ones are required if it finds one
 missing (default: False)
 --force-interactive Force Certbot to be interactive even if it detects
 it's not being run in a terminal. This flag cannot be
 used with the renew subcommand. (default: False)
 -d DOMAIN, --domains DOMAIN, --domain DOMAIN
 Domain names to apply. For multiple domains you can
 use multiple -d flags or enter a comma separated list
 of domains as a parameter. The first domain provided
 will be the subject CN of the certificate, and all
 domains will be Subject Alternative Names on the
 certificate. The first domain will also be used in
 some software user interfaces and as the file paths
 for the certificate and related material unless
 otherwise specified or you already have a certificate
 with the same name. In the case of a name collision it
 will append a number like 0001 to the file path name.
 (default: Ask)
 --eab-kid EAB_KID Key Identifier for External Account Binding (default:
 None)
 --eab-hmac-key EAB_HMAC_KEY
 HMAC key for External Account Binding (default: None)
 --cert-name CERTNAME Certificate name to apply. This name is used by
 Certbot for housekeeping and in file paths; it doesn't
 affect the content of the certificate itself. To see
 certificate names, run 'certbot certificates'. When
 creating a new certificate, specifies the new
 certificate's name. (default: the first provided
 domain or the name of an existing certificate on your
 system for the same domains)
 --dry-run Perform a test run of the client, obtaining test
 (invalid) certificates but not saving them to disk.
 This can currently only be used with the 'certonly'
 and 'renew' subcommands. Note: Although --dry-run
 tries to avoid making any persistent changes on a
 system, it is not completely side-effect free: if used
 with webserver authenticator plugins like apache and
 nginx, it makes and then reverts temporary config
 changes in order to obtain test certificates, and
 reloads webservers to deploy and then roll back those
 changes. It also calls --pre-hook and --post-hook
 commands if they are defined because they may be
 necessary to accurately simulate renewal. --deploy-
 hook commands are not called. (default: False)
 --debug-challenges After setting up challenges, wait for user input
 before submitting to CA. When used in combination with
 the `-v` option, the challenge URLs or FQDNs and their
 expected return values are shown. (default: False)
 --preferred-chain PREFERRED_CHAIN
 Set the preferred certificate chain. If the CA offers
 multiple certificate chains, prefer the chain whose
 topmost certificate was issued from this Subject
 Common Name. If no match, the default offered chain
 will be used. (default: None)
 --preferred-challenges PREF_CHALLS
 A sorted, comma delimited list of the preferred
 challenge to use during authorization with the most
 preferred challenge listed first (Eg, "dns" or
 "http,dns"). Not all plugins support all challenges.
 See https://certbot.eff.org/docs/using.html#plugins
 for details. ACME Challenges are versioned, but if you
 pick "http" rather than "http-01", Certbot will select
 the latest version automatically. (default: [])
 --issuance-timeout ISSUANCE_TIMEOUT
 This option specifies how long (in seconds) Certbot
 will wait for the server to issue a certificate.
 (default: 90)
 --user-agent USER_AGENT
 Set a custom user agent string for the client. User
 agent strings allow the CA to collect high level
 statistics about success rates by OS, plugin and use
 case, and to know when to deprecate support for past
 Python versions and flags. If you wish to hide this
 information from the Let's Encrypt server, set this to
 "". (default: CertbotACMEClient/1.29.0 (certbot;
 OS_NAME OS_VERSION) Authenticator/XXX Installer/YYY
 (SUBCOMMAND; flags: FLAGS) Py/major.minor.patchlevel).
 The flags encoded in the user agent are: --duplicate,
 --force-renew, --allow-subset-of-names, -n, and
 whether any hooks are set.
 --user-agent-comment USER_AGENT_COMMENT
 Add a comment to the default user agent string. May be
 used when repackaging Certbot or calling it from
 another tool to allow additional statistical data to
 be collected. Ignored if --user-agent is set.
 (Example: Foo-Wrapper/1.0) (default: None)

automation:
 Flags for automating execution & other tweaks

 --keep-until-expiring, --keep, --reinstall
 If the requested certificate matches an existing
 certificate, always keep the existing one until it is
 due for renewal (for the 'run' subcommand this means
 reinstall the existing certificate). (default: Ask)
 --expand If an existing certificate is a strict subset of the
 requested names, always expand and replace it with the
 additional names. (default: Ask)
 --version show program's version number and exit
 --force-renewal, --renew-by-default
 If a certificate already exists for the requested
 domains, renew it now, regardless of whether it is
 near expiry. (Often --keep-until-expiring is more
 appropriate). Also implies --expand. (default: False)
 --renew-with-new-domains
 If a certificate already exists for the requested
 certificate name but does not match the requested
 domains, renew it now, regardless of whether it is
 near expiry. (default: False)
 --reuse-key When renewing, use the same private key as the
 existing certificate. (default: False)
 --no-reuse-key When renewing, do not use the same private key as the
 existing certificate. Not reusing private keys is the
 default behavior of Certbot. This option may be used
 to unset --reuse-key on an existing certificate.
 (default: False)
 --new-key When renewing or replacing a certificate, generate a
 new private key, even if --reuse-key is set on the
 existing certificate. Combining --new-key and --reuse-
 key will result in the private key being replaced and
 then reused in future renewals. (default: False)
 --allow-subset-of-names
 When performing domain validation, do not consider it
 a failure if authorizations can not be obtained for a
 strict subset of the requested domains. This may be
 useful for allowing renewals for multiple domains to
 succeed even if some domains no longer point at this
 system. This option cannot be used with --csr.
 (default: False)
 --agree-tos Agree to the ACME Subscriber Agreement (default: Ask)
 --duplicate Allow making a certificate lineage that duplicates an
 existing one (both can be renewed in parallel)
 (default: False)
 -q, --quiet Silence all output except errors. Useful for
 automation via cron. Implies --non-interactive.
 (default: False)

security:
 Security parameters & server settings

 --rsa-key-size N Size of the RSA key. (default: 2048)
 --key-type {rsa,ecdsa}
 Type of generated private key. Only *ONE* per
 invocation can be provided at this time. (default:
 rsa)
 --elliptic-curve N The SECG elliptic curve name to use. Please see RFC
 8446 for supported values. (default: secp256r1)
 --must-staple Adds the OCSP Must-Staple extension to the
 certificate. Autoconfigures OCSP Stapling for
 supported setups (Apache version >= 2.3.3). (default:
 False)
 --redirect Automatically redirect all HTTP traffic to HTTPS for
 the newly authenticated vhost. (default: redirect
 enabled for install and run, disabled for enhance)
 --no-redirect Do not automatically redirect all HTTP traffic to
 HTTPS for the newly authenticated vhost. (default:
 redirect enabled for install and run, disabled for
 enhance)
 --hsts Add the Strict-Transport-Security header to every HTTP
 response. Forcing browser to always use SSL for the
 domain. Defends against SSL Stripping. (default: None)
 --uir Add the "Content-Security-Policy: upgrade-insecure-
 requests" header to every HTTP response. Forcing the
 browser to use https:// for every http:// resource.
 (default: None)
 --staple-ocsp Enables OCSP Stapling. A valid OCSP response is
 stapled to the certificate that the server offers
 during TLS. (default: None)
 --strict-permissions Require that all configuration files are owned by the
 current user; only needed if your config is somewhere
 unsafe like /tmp/ (default: False)
 --auto-hsts Gradually increasing max-age value for HTTP Strict
 Transport Security security header (default: False)

testing:
 The following flags are meant for testing and integration purposes only.

 --test-cert, --staging
 Use the staging server to obtain or revoke test
 (invalid) certificates; equivalent to --server
 https://acme-staging-v02.api.letsencrypt.org/directory
 (default: False)
 --debug Show tracebacks in case of errors (default: False)
 --no-verify-ssl Disable verification of the ACME server's certificate.
 (default: False)
 --http-01-port HTTP01_PORT
 Port used in the http-01 challenge. This only affects
 the port Certbot listens on. A conforming ACME server
 will still attempt to connect on port 80. (default:
 80)
 --http-01-address HTTP01_ADDRESS
 The address the server listens to during http-01
 challenge. (default:)
 --https-port HTTPS_PORT
 Port used to serve HTTPS. This affects which port
 Nginx will listen on after a LE certificate is
 installed. (default: 443)
 --break-my-certs Be willing to replace or renew valid certificates with
 invalid (testing/staging) certificates (default:
 False)

paths:
 Flags for changing execution paths & servers

 --cert-path CERT_PATH
 Path to where certificate is saved (with certonly
 --csr), installed from, or revoked (default: None)
 --key-path KEY_PATH Path to private key for certificate installation or
 revocation (if account key is missing) (default: None)
 --fullchain-path FULLCHAIN_PATH
 Accompanying path to a full certificate chain
 (certificate plus chain). (default: None)
 --chain-path CHAIN_PATH
 Accompanying path to a certificate chain. (default:
 None)
 --config-dir CONFIG_DIR
 Configuration directory. (default: /etc/letsencrypt)
 --work-dir WORK_DIR Working directory. (default: /var/lib/letsencrypt)
 --logs-dir LOGS_DIR Logs directory. (default: /var/log/letsencrypt)
 --server SERVER ACME Directory Resource URI. (default:
 https://acme-v02.api.letsencrypt.org/directory)

manage:
 Various subcommands and flags are available for managing your
 certificates:

 certificates List certificates managed by Certbot
 delete Clean up all files related to a certificate
 renew Renew all certificates (or one specified with --cert-
 name)
 revoke Revoke a certificate specified with --cert-path or
 --cert-name
 update_symlinks Recreate symlinks in your /etc/letsencrypt/live/
 directory

run:
 Options for obtaining & installing certificates

certonly:
 Options for modifying how a certificate is obtained

 --csr CSR Path to a Certificate Signing Request (CSR) in DER or
 PEM format. Currently --csr only works with the
 'certonly' subcommand. (default: None)

renew:
 The 'renew' subcommand will attempt to renew any certificates previously
 obtained if they are close to expiry, and print a summary of the results.
 By default, 'renew' will reuse the plugins and options used to obtain or
 most recently renew each certificate. You can test whether future renewals
 will succeed with `--dry-run`. Individual certificates can be renewed with
 the `--cert-name` option. Hooks are available to run commands before and
 after renewal; see https://certbot.eff.org/docs/using.html#renewal for
 more information on these.

 --pre-hook PRE_HOOK Command to be run in a shell before obtaining any
 certificates. Intended primarily for renewal, where it
 can be used to temporarily shut down a webserver that
 might conflict with the standalone plugin. This will
 only be called if a certificate is actually to be
 obtained/renewed. When renewing several certificates
 that have identical pre-hooks, only the first will be
 executed. (default: None)
 --post-hook POST_HOOK
 Command to be run in a shell after attempting to
 obtain/renew certificates. Can be used to deploy
 renewed certificates, or to restart any servers that
 were stopped by --pre-hook. This is only run if an
 attempt was made to obtain/renew a certificate. If
 multiple renewed certificates have identical post-
 hooks, only one will be run. (default: None)
 --deploy-hook DEPLOY_HOOK
 Command to be run in a shell once for each
 successfully issued certificate. For this command, the
 shell variable $RENEWED_LINEAGE will point to the
 config live subdirectory (for example,
 "/etc/letsencrypt/live/example.com") containing the
 new certificates and keys; the shell variable
 $RENEWED_DOMAINS will contain a space-delimited list
 of renewed certificate domains (for example,
 "example.com www.example.com") (default: None)
 --disable-hook-validation
 Ordinarily the commands specified for --pre-
 hook/--post-hook/--deploy-hook will be checked for
 validity, to see if the programs being run are in the
 $PATH, so that mistakes can be caught early, even when
 the hooks aren't being run just yet. The validation is
 rather simplistic and fails if you use more advanced
 shell constructs, so you can use this switch to
 disable it. (default: False)
 --no-directory-hooks Disable running executables found in Certbot's hook
 directories during renewal. (default: False)
 --disable-renew-updates
 Disable automatic updates to your server configuration
 that would otherwise be done by the selected installer
 plugin, and triggered when the user executes "certbot
 renew", regardless of if the certificate is renewed.
 This setting does not apply to important TLS
 configuration updates. (default: False)
 --no-autorenew Disable auto renewal of certificates. (default: False)

certificates:
 List certificates managed by Certbot

delete:
 Options for deleting a certificate

revoke:
 Options for revocation of certificates

 --reason {unspecified,keycompromise,affiliationchanged,superseded,cessationofoperation}
 Specify reason for revoking certificate. (default:
 unspecified)
 --delete-after-revoke
 Delete certificates after revoking them, along with
 all previous and later versions of those certificates.
 (default: None)
 --no-delete-after-revoke
 Do not delete certificates after revoking them. This
 option should be used with caution because the 'renew'
 subcommand will attempt to renew undeleted revoked
 certificates. (default: None)

register:
 Options for account registration

 --register-unsafely-without-email
 Specifying this flag enables registering an account
 with no email address. This is strongly discouraged,
 because you will be unable to receive notice about
 impending expiration or revocation of your
 certificates or problems with your Certbot
 installation that will lead to failure to renew.
 (default: False)
 -m EMAIL, --email EMAIL
 Email used for registration and recovery contact. Use
 comma to register multiple emails, ex:
 u1@example.com,u2@example.com. (default: Ask).
 --eff-email Share your e-mail address with EFF (default: None)
 --no-eff-email Don't share your e-mail address with EFF (default:
 None)

update_account:
 Options for account modification

unregister:
 Options for account deactivation.

 --account ACCOUNT_ID Account ID to use (default: None)

install:
 Options for modifying how a certificate is deployed

rollback:
 Options for rolling back server configuration changes

 --checkpoints N Revert configuration N number of checkpoints.
 (default: 1)

plugins:
 Options for the "plugins" subcommand

 --init Initialize plugins. (default: False)
 --prepare Initialize and prepare plugins. (default: False)
 --authenticators Limit to authenticator plugins only. (default: None)
 --installers Limit to installer plugins only. (default: None)

update_symlinks:
 Recreates certificate and key symlinks in /etc/letsencrypt/live, if you
 changed them by hand or edited a renewal configuration file

enhance:
 Helps to harden the TLS configuration by adding security enhancements to
 already existing configuration.

show_account:
 Options useful for the "show_account" subcommand:

plugins:
 Plugin Selection: Certbot client supports an extensible plugins
 architecture. See 'certbot plugins' for a list of all installed plugins
 and their names. You can force a particular plugin by setting options
 provided below. Running --help <plugin_name> will list flags specific to
 that plugin.

 --configurator CONFIGURATOR
 Name of the plugin that is both an authenticator and
 an installer. Should not be used together with
 --authenticator or --installer. (default: Ask)
 -a AUTHENTICATOR, --authenticator AUTHENTICATOR
 Authenticator plugin name. (default: None)
 -i INSTALLER, --installer INSTALLER
 Installer plugin name (also used to find domains).
 (default: None)
 --apache Obtain and install certificates using Apache (default:
 False)
 --nginx Obtain and install certificates using Nginx (default:
 False)
 --standalone Obtain certificates using a "standalone" webserver.
 (default: False)
 --manual Provide laborious manual instructions for obtaining a
 certificate (default: False)
 --webroot Obtain certificates by placing files in a webroot
 directory. (default: False)
 --dns-cloudflare Obtain certificates using a DNS TXT record (if you are
 using Cloudflare for DNS). (default: False)
 --dns-cloudxns Obtain certificates using a DNS TXT record (if you are
 using CloudXNS for DNS). (default: False)
 --dns-digitalocean Obtain certificates using a DNS TXT record (if you are
 using DigitalOcean for DNS). (default: False)
 --dns-dnsimple Obtain certificates using a DNS TXT record (if you are
 using DNSimple for DNS). (default: False)
 --dns-dnsmadeeasy Obtain certificates using a DNS TXT record (if you are
 using DNS Made Easy for DNS). (default: False)
 --dns-gehirn Obtain certificates using a DNS TXT record (if you are
 using Gehirn Infrastructure Service for DNS).
 (default: False)
 --dns-google Obtain certificates using a DNS TXT record (if you are
 using Google Cloud DNS). (default: False)
 --dns-linode Obtain certificates using a DNS TXT record (if you are
 using Linode for DNS). (default: False)
 --dns-luadns Obtain certificates using a DNS TXT record (if you are
 using LuaDNS for DNS). (default: False)
 --dns-nsone Obtain certificates using a DNS TXT record (if you are
 using NS1 for DNS). (default: False)
 --dns-ovh Obtain certificates using a DNS TXT record (if you are
 using OVH for DNS). (default: False)
 --dns-rfc2136 Obtain certificates using a DNS TXT record (if you are
 using BIND for DNS). (default: False)
 --dns-route53 Obtain certificates using a DNS TXT record (if you are
 using Route53 for DNS). (default: False)
 --dns-sakuracloud Obtain certificates using a DNS TXT record (if you are
 using Sakura Cloud for DNS). (default: False)

apache:
 Apache Web Server plugin (Please note that the default values of the
 Apache plugin options change depending on the operating system Certbot is
 run on.)

 --apache-enmod APACHE_ENMOD
 Path to the Apache 'a2enmod' binary (default: None)
 --apache-dismod APACHE_DISMOD
 Path to the Apache 'a2dismod' binary (default: None)
 --apache-le-vhost-ext APACHE_LE_VHOST_EXT
 SSL vhost configuration extension (default: -le-
 ssl.conf)
 --apache-server-root APACHE_SERVER_ROOT
 Apache server root directory (default: /etc/apache2)
 --apache-vhost-root APACHE_VHOST_ROOT
 Apache server VirtualHost configuration root (default:
 None)
 --apache-logs-root APACHE_LOGS_ROOT
 Apache server logs directory (default:
 /var/log/apache2)
 --apache-challenge-location APACHE_CHALLENGE_LOCATION
 Directory path for challenge configuration (default:
 /etc/apache2)
 --apache-handle-modules APACHE_HANDLE_MODULES
 Let installer handle enabling required modules for you
 (Only Ubuntu/Debian currently) (default: False)
 --apache-handle-sites APACHE_HANDLE_SITES
 Let installer handle enabling sites for you (Only
 Ubuntu/Debian currently) (default: False)
 --apache-ctl APACHE_CTL
 Full path to Apache control script (default:
 apache2ctl)
 --apache-bin APACHE_BIN
 Full path to apache2/httpd binary (default: None)

dns-cloudflare:
 Obtain certificates using a DNS TXT record (if you are using Cloudflare
 for DNS).

 --dns-cloudflare-propagation-seconds DNS_CLOUDFLARE_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 10)
 --dns-cloudflare-credentials DNS_CLOUDFLARE_CREDENTIALS
 Cloudflare credentials INI file. (default: None)

dns-cloudxns:
 Obtain certificates using a DNS TXT record (if you are using CloudXNS for
 DNS).

 --dns-cloudxns-propagation-seconds DNS_CLOUDXNS_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 30)
 --dns-cloudxns-credentials DNS_CLOUDXNS_CREDENTIALS
 CloudXNS credentials INI file. (default: None)

dns-digitalocean:
 Obtain certificates using a DNS TXT record (if you are using DigitalOcean
 for DNS).

 --dns-digitalocean-propagation-seconds DNS_DIGITALOCEAN_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 10)
 --dns-digitalocean-credentials DNS_DIGITALOCEAN_CREDENTIALS
 DigitalOcean credentials INI file. (default: None)

dns-dnsimple:
 Obtain certificates using a DNS TXT record (if you are using DNSimple for
 DNS).

 --dns-dnsimple-propagation-seconds DNS_DNSIMPLE_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 30)
 --dns-dnsimple-credentials DNS_DNSIMPLE_CREDENTIALS
 DNSimple credentials INI file. (default: None)

dns-dnsmadeeasy:
 Obtain certificates using a DNS TXT record (if you are using DNS Made Easy
 for DNS).

 --dns-dnsmadeeasy-propagation-seconds DNS_DNSMADEEASY_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 60)
 --dns-dnsmadeeasy-credentials DNS_DNSMADEEASY_CREDENTIALS
 DNS Made Easy credentials INI file. (default: None)

dns-gehirn:
 Obtain certificates using a DNS TXT record (if you are using Gehirn
 Infrastructure Service for DNS).

 --dns-gehirn-propagation-seconds DNS_GEHIRN_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 30)
 --dns-gehirn-credentials DNS_GEHIRN_CREDENTIALS
 Gehirn Infrastructure Service credentials file.
 (default: None)

dns-google:
 Obtain certificates using a DNS TXT record (if you are using Google Cloud
 DNS for DNS).

 --dns-google-propagation-seconds DNS_GOOGLE_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 60)
 --dns-google-credentials DNS_GOOGLE_CREDENTIALS
 Path to Google Cloud DNS service account JSON file.
 (See https://developers.google.com/identity/protocols/
 OAuth2ServiceAccount#creatinganaccount forinformation
 about creating a service account and
 https://cloud.google.com/dns/access-
 control#permissions_and_roles for information about
 therequired permissions.) (default: None)

dns-linode:
 Obtain certificates using a DNS TXT record (if you are using Linode for
 DNS).

 --dns-linode-propagation-seconds DNS_LINODE_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 120)
 --dns-linode-credentials DNS_LINODE_CREDENTIALS
 Linode credentials INI file. (default: None)

dns-luadns:
 Obtain certificates using a DNS TXT record (if you are using LuaDNS for
 DNS).

 --dns-luadns-propagation-seconds DNS_LUADNS_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 30)
 --dns-luadns-credentials DNS_LUADNS_CREDENTIALS
 LuaDNS credentials INI file. (default: None)

dns-nsone:
 Obtain certificates using a DNS TXT record (if you are using NS1 for DNS).

 --dns-nsone-propagation-seconds DNS_NSONE_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 30)
 --dns-nsone-credentials DNS_NSONE_CREDENTIALS
 NS1 credentials file. (default: None)

dns-ovh:
 Obtain certificates using a DNS TXT record (if you are using OVH for DNS).

 --dns-ovh-propagation-seconds DNS_OVH_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 120)
 --dns-ovh-credentials DNS_OVH_CREDENTIALS
 OVH credentials INI file. (default: None)

dns-rfc2136:
 Obtain certificates using a DNS TXT record (if you are using BIND for
 DNS).

 --dns-rfc2136-propagation-seconds DNS_RFC2136_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 60)
 --dns-rfc2136-credentials DNS_RFC2136_CREDENTIALS
 RFC 2136 credentials INI file. (default: None)

dns-route53:
 Obtain certificates using a DNS TXT record (if you are using AWS Route53
 for DNS).

 --dns-route53-propagation-seconds DNS_ROUTE53_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 10)

dns-sakuracloud:
 Obtain certificates using a DNS TXT record (if you are using Sakura Cloud
 for DNS).

 --dns-sakuracloud-propagation-seconds DNS_SAKURACLOUD_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 90)
 --dns-sakuracloud-credentials DNS_SAKURACLOUD_CREDENTIALS
 Sakura Cloud credentials file. (default: None)

manual:
 Authenticate through manual configuration or custom shell scripts. When
 using shell scripts, an authenticator script must be provided. The
 environment variables available to this script depend on the type of
 challenge. $CERTBOT_DOMAIN will always contain the domain being
 authenticated. For HTTP-01 and DNS-01, $CERTBOT_VALIDATION is the
 validation string, and $CERTBOT_TOKEN is the filename of the resource
 requested when performing an HTTP-01 challenge. An additional cleanup
 script can also be provided and can use the additional variable
 $CERTBOT_AUTH_OUTPUT which contains the stdout output from the auth
 script. For both authenticator and cleanup script, on HTTP-01 and DNS-01
 challenges, $CERTBOT_REMAINING_CHALLENGES will be equal to the number of
 challenges that remain after the current one, and $CERTBOT_ALL_DOMAINS
 contains a comma-separated list of all domains that are challenged for the
 current certificate.

 --manual-auth-hook MANUAL_AUTH_HOOK
 Path or command to execute for the authentication
 script (default: None)
 --manual-cleanup-hook MANUAL_CLEANUP_HOOK
 Path or command to execute for the cleanup script
 (default: None)

nginx:
 Nginx Web Server plugin

 --nginx-server-root NGINX_SERVER_ROOT
 Nginx server root directory. (default: /etc/nginx or
 /usr/local/etc/nginx)
 --nginx-ctl NGINX_CTL
 Path to the 'nginx' binary, used for 'configtest' and
 retrieving nginx version number. (default: nginx)
 --nginx-sleep-seconds NGINX_SLEEP_SECONDS
 Number of seconds to wait for nginx configuration
 changes to apply when reloading. (default: 1)

null:
 Null Installer

standalone:
 Spin up a temporary webserver

webroot:
 Place files in webroot directory

 --webroot-path WEBROOT_PATH, -w WEBROOT_PATH
 public_html / webroot path. This can be specified
 multiple times to handle different domains; each
 domain will have the webroot path that preceded it.
 For instance: `-w /var/www/example -d example.com -d
 www.example.com -w /var/www/thing -d thing.net -d
 m.thing.net` (default: Ask)
 --webroot-map WEBROOT_MAP
 JSON dictionary mapping domains to webroot paths; this
 implies -d for each entry. You may need to escape this
 from your shell. E.g.: --webroot-map
 '{"eg1.is,m.eg1.is":"/www/eg1/", "eg2.is":"/www/eg2"}'
 This option is merged with, but takes precedence over,
 -w / -d entries. At present, if you put webroot-map in
 a config file, it needs to be on a single line, like:
 webroot-map = {"example.com":"/var/www"}. (default:
 {})

Getting help

If you’re having problems, we recommend posting on the Let’s Encrypt
Community Forum [https://community.letsencrypt.org].

If you find a bug in the software, please do report it in our issue
tracker [https://github.com/certbot/certbot/issues]. Remember to
give us as much information as possible:

	copy and paste exact command line used and the output (though mind
that the latter might include some personally identifiable
information, including your email and domains)

	copy and paste logs from /var/log/letsencrypt (though mind they
also might contain personally identifiable information)

	copy and paste certbot --version output

	your operating system, including specific version

	specify which installation method you’ve chosen

Developer Guide

Table of Contents

	Getting Started

	Running a local copy of the client

	Find issues to work on

	Testing

	Running automated unit tests

	Running automated integration tests

	Running manual integration tests

	Running tests in CI

	Code components and layout

	Plugin-architecture

	Authenticators

	Installer

	Installer Development

	Writing your own plugin

	Writing your own plugin snap

	Coding style

	Use certbot.compat.os instead of os

	Mypy type annotations

	Submitting a pull request

	Asking for help

	Building the Certbot and DNS plugin snaps

	Updating the documentation

	Certbot’s dependencies

	Updating dependency versions

	Running the client with Docker

Getting Started

Certbot has the same system requirements when set
up for development. While the section below will help you install Certbot and
its dependencies, Certbot needs to be run on a UNIX-like OS so if you’re using
Windows, you’ll need to set up a (virtual) machine running an OS such as Linux
and continue with these instructions on that UNIX-like OS.

Running a local copy of the client

Running the client in developer mode from your local tree is a little different
than running Certbot as a user. To get set up, clone our git repository by
running:

git clone https://github.com/certbot/certbot

If you’re running on a UNIX-like OS, you can run the following commands to
install dependencies and set up a virtual environment where you can run
Certbot.

Install and configure the OS system dependencies required to run Certbot.

For APT-based distributions (e.g. Debian, Ubuntu ...)
sudo apt update
sudo apt install python3-dev python3-venv gcc libaugeas0 libssl-dev \
 libffi-dev ca-certificates openssl
For RPM-based distributions (e.g. Fedora, CentOS ...)
NB1: old distributions will use yum instead of dnf
NB2: RHEL-based distributions use python3X-devel instead of python3-devel (e.g. python36-devel)
sudo dnf install python3-devel gcc augeas-libs openssl-devel libffi-devel \
 redhat-rpm-config ca-certificates openssl
For macOS installations with Homebrew already installed and configured
NB: If you also run `brew install python` you don't need the ~/lib
directory created below, however, Certbot's Apache plugin won't work
if you use Python installed from other sources such as pyenv or the
version provided by Apple.
brew install augeas
mkdir ~/lib
ln -s $(brew --prefix)/lib/libaugeas* ~/lib

Set up the Python virtual environment that will host your Certbot local instance.

cd certbot
python tools/venv.py

Note

You may need to repeat this when
Certbot’s dependencies change or when a new plugin is introduced.

You can now run the copy of Certbot from git either by executing
venv/bin/certbot, or by activating the virtual environment. You can do the
latter by running:

source venv/bin/activate

After running this command, certbot and development tools like ipdb3,
ipython, pytest, and tox are available in the shell where you ran
the command. These tools are installed in the virtual environment and are kept
separate from your global Python installation. This works by setting
environment variables so the right executables are found and Python can pull in
the versions of various packages needed by Certbot. More information can be
found in the virtualenv docs [https://virtualenv.pypa.io].

Find issues to work on

You can find the open issues in the github issue tracker [https://github.com/certbot/certbot/issues]. Comparatively
easy ones are marked good first issue [https://github.com/certbot/certbot/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22]. If you’re starting work on
something, post a comment to let others know and seek feedback on your plan
where appropriate.

Once you’ve got a working branch, you can open a pull request. All changes in
your pull request must have thorough unit test coverage, pass our
tests, and be compliant with the coding style.

Testing

You can test your code in several ways:

	running the automated unit tests,

	running the automated integration tests

	running an ad hoc manual integration test

Note

Running integration tests does not currently work on macOS. See
https://github.com/certbot/certbot/issues/6959. In the meantime, we
recommend developers on macOS open a PR to run integration tests.

Running automated unit tests

When you are working in a file foo.py, there should also be a file foo_test.py
either in the same directory as foo.py or in the tests subdirectory
(if there isn’t, make one). While you are working on your code and tests, run
python foo_test.py to run the relevant tests.

For debugging, we recommend putting
import ipdb; ipdb.set_trace() statements inside the source code.

Once you are done with your code changes, and the tests in foo_test.py
pass, run all of the unit tests for Certbot and check for coverage with tox
-e py3-cover. You should then check for code style with tox -e lint (all
files) or pylint --rcfile=.pylintrc path/to/file.py (single file at a
time).

Once all of the above is successful, you may run the full test suite using
tox --skip-missing-interpreters. We recommend running the commands above
first, because running all tests like this is very slow, and the large amount
of output can make it hard to find specific failures when they happen.

Warning

The full test suite may attempt to modify your system’s Apache
config if your user has sudo permissions, so it should not be run on a
production Apache server.

Running automated integration tests

Generally it is sufficient to open a pull request and let Github and Azure Pipelines run
integration tests for you. However, you may want to run them locally before submitting
your pull request. You need Docker and docker-compose installed and working.

The tox environment integration will setup Pebble [https://github.com/letsencrypt/pebble], the Let’s Encrypt ACME CA server
for integration testing, then launch the Certbot integration tests.

With a user allowed to access your local Docker daemon, run:

tox -e integration

Tests will be run using pytest. A test report and a code coverage report will be
displayed at the end of the integration tests execution.

Running manual integration tests

You can also manually execute Certbot against a local instance of the Pebble [https://github.com/letsencrypt/pebble] ACME server.
This is useful to verify that the modifications done to the code makes Certbot behave as expected.

To do so you need:

	Docker installed, and a user with access to the Docker client,

	an available local copy of Certbot.

The virtual environment set up with python tools/venv.py contains two CLI tools
that can be used once the virtual environment is activated:

run_acme_server

	Starts a local instance of Pebble and runs in the foreground printing its logs.

	Press CTRL+C to stop this instance.

	This instance is configured to validate challenges against certbot executed locally.

Note

Some options are available to tweak the local ACME server. You can execute
run_acme_server --help to see the inline help of the run_acme_server tool.

certbot_test [ARGS...]

	Execute certbot with the provided arguments and other arguments useful for testing purposes,
such as: verbose output, full tracebacks in case Certbot crashes, etc.

	Execution is preconfigured to interact with the Pebble CA started with run_acme_server.

	Any arguments can be passed as they would be to Certbot (eg. certbot_test certonly -d test.example.com).

Here is a typical workflow to verify that Certbot successfully issued a certificate
using an HTTP-01 challenge on a machine with Python 3:

python tools/venv.py
source venv/bin/activate
run_acme_server &
certbot_test certonly --standalone -d test.example.com
To stop Pebble, launch `fg` to get back the background job, then press CTRL+C

Running tests in CI

Certbot uses Azure Pipelines to run continuous integration tests. If you are using our
Azure setup, a branch whose name starts with test- will run all tests on that branch.

Code components and layout

The following components of the Certbot repository are distributed to users:

	acme
	contains all protocol specific code

	certbot
	main client code

	certbot-apache and certbot-nginx
	client code to configure specific web servers

	certbot-dns-*
	client code to configure DNS providers

	windows installer
	Installs Certbot on Windows and is built using the files in windows-installer/

Plugin-architecture

Certbot has a plugin architecture to facilitate support for
different webservers, other TLS servers, and operating systems.
The interfaces available for plugins to implement are defined in
interfaces.py [https://github.com/certbot/certbot/blob/master/certbot/certbot/interfaces.py] and plugins/common.py [https://github.com/certbot/certbot/blob/master/certbot/certbot/plugins/common.py#L45].

The main two plugin interfaces are Authenticator, which
implements various ways of proving domain control to a certificate authority,
and Installer, which configures a server to use a
certificate once it is issued. Some plugins, like the built-in Apache and Nginx
plugins, implement both interfaces and perform both tasks. Others, like the
built-in Standalone authenticator, implement just one interface.

Authenticators

Authenticators are plugins that prove control of a domain name by solving a
challenge provided by the ACME server. ACME currently defines several types of
challenges: HTTP, TLS-ALPN, and DNS, represented by classes in acme.challenges [https://acme-python.readthedocs.io/en/latest/api/challenges.html#module-acme.challenges].
An authenticator plugin should implement support for at least one challenge type.

An Authenticator indicates which challenges it supports by implementing
get_chall_pref(domain) to return a sorted list of challenge types in
preference order.

An Authenticator must also implement perform(achalls), which “performs” a list
of challenges by, for instance, provisioning a file on an HTTP server, or
setting a TXT record in DNS. Once all challenges have succeeded or failed,
Certbot will call the plugin’s cleanup(achalls) method to remove any files or
DNS records that were needed only during authentication.

Installer

Installers plugins exist to actually setup the certificate in a server,
possibly tweak the security configuration to make it more correct and secure
(Fix some mixed content problems, turn on HSTS, redirect to HTTPS, etc).
Installer plugins tell the main client about their abilities to do the latter
via the supported_enhancements() call. We currently
have two Installers in the tree, the ApacheConfigurator. and the
NginxConfigurator. External projects have made some progress toward
support for IIS, Icecast and Plesk.

Installers and Authenticators will oftentimes be the same class/object
(because for instance both tasks can be performed by a webserver like nginx)
though this is not always the case (the standalone plugin is an authenticator
that listens on port 80, but it cannot install certificates; a postfix plugin
would be an installer but not an authenticator).

Installers and Authenticators are kept separate because
it should be possible to use the StandaloneAuthenticator (it sets
up its own Python server to perform challenges) with a program that
cannot solve challenges itself (Such as MTA installers).

Installer Development

There are a few existing classes that may be beneficial while
developing a new Installer.
Installers aimed to reconfigure UNIX servers may use Augeas for
configuration parsing and can inherit from AugeasConfigurator class
to handle much of the interface. Installers that are unable to use
Augeas may still find the Reverter class helpful in handling
configuration checkpoints and rollback.

Writing your own plugin

Note

The Certbot team is not currently accepting any new plugins
because we want to rethink our approach to the challenge and resolve some
issues like #6464 [https://github.com/certbot/certbot/issues/6464],
#6503 [https://github.com/certbot/certbot/issues/6503], and #6504 [https://github.com/certbot/certbot/issues/6504] first.

In the meantime, you’re welcome to release it as a third-party plugin. See
certbot-dns-ispconfig [https://github.com/m42e/certbot-dns-ispconfig]
for one example of that.

Certbot client supports dynamic discovery of plugins through the
setuptools entry points [https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points] using the certbot.plugins group. This
way you can, for example, create a custom implementation of
Authenticator or the
Installer without having to merge it
with the core upstream source code. An example is provided in
examples/plugins/ directory.

While developing, you can install your plugin into a Certbot development
virtualenv like this:

. venv/bin/activate
pip install -e examples/plugins/
certbot_test plugins

Your plugin should show up in the output of the last command. If not,
it was not installed properly.

Once you’ve finished your plugin and published it, you can have your
users install it system-wide with pip install. Note that this will
only work for users who have Certbot installed from OS packages or via
pip.

Writing your own plugin snap

If you’d like your plugin to be used alongside the Certbot snap, you
will also have to publish your plugin as a snap. Plugin snaps are
regular confined snaps, but normally do not provide any “apps”
themselves. Plugin snaps export loadable Python modules to the Certbot
snap.

When the Certbot snap runs, it will use its version of Python and prefer
Python modules contained in its own snap over modules contained in
external snaps. This means that your snap doesn’t have to contain things
like an extra copy of Python, Certbot, or their dependencies, but also
that if you need a different version of a dependency than is already
installed in the Certbot snap, the Certbot snap will have to be updated.

Certbot plugin snaps expose their Python modules to the Certbot snap via a
snap content interface [https://snapcraft.io/docs/content-interface] where certbot-1 is the value for the content
attribute. The Certbot snap only uses this to find the names of connected
plugin snaps and it expects to find the Python modules to be loaded under
lib/python3.8/site-packages/ in the plugin snap. This location is the
default when using the core20 base snap [https://snapcraft.io/docs/base-snaps] and the python snapcraft
plugin [https://snapcraft.io/docs/python-plugin].

The Certbot snap also provides a separate content interface which
you can use to get metadata about the Certbot snap using the content
identifier metadata-1.

The script used to generate the snapcraft.yaml files for our own externally
snapped plugins can be found at
https://github.com/certbot/certbot/blob/master/tools/snap/generate_dnsplugins_snapcraft.sh.

For more information on building externally snapped plugins, see the section on
Building the Certbot and DNS plugin snaps.

Once you have created your own snap, if you have the snap file locally,
it can be installed for use with Certbot by running:

snap install --classic certbot
snap set certbot trust-plugin-with-root=ok
snap install --dangerous your-snap-filename.snap
sudo snap connect certbot:plugin your-snap-name
sudo /snap/bin/certbot plugins

If everything worked, the last command should list your plugin in the
list of plugins found by Certbot. Once your snap is published to the
snap store, it will be installable through the name of the snap on the
snap store without the --dangerous flag. If you are also using
Certbot’s metadata interface, you can run sudo snap connect
your-snap-name:your-plug-name-for-metadata certbot:certbot-metadata to
connect your snap to it.

Coding style

Please:

	Be consistent with the rest of the code.

	Read PEP 8 - Style Guide for Python Code [https://www.python.org/dev/peps/pep-0008].

	Follow the Google Python Style Guide [https://google.github.io/styleguide/pyguide.html], with the exception that we
use Sphinx-style [https://www.sphinx-doc.org/] documentation:

def foo(arg):
 """Short description.

 :param int arg: Some number.

 :returns: Argument
 :rtype: int

 """
 return arg

	Remember to use pylint.

	You may consider installing a plugin for editorconfig [https://editorconfig.org/] in
your editor to prevent some linting warnings.

	Please avoid unittest.assertTrue or unittest.assertFalse when
possible, and use assertEqual or more specific assert. They give
better messages when it’s failing, and are generally more correct.

Use certbot.compat.os instead of os

Python’s standard library os module lacks full support for several Windows
security features about file permissions (eg. DACLs). However several files
handled by Certbot (eg. private keys) need strongly restricted access
on both Linux and Windows.

To help with this, the certbot.compat.os module wraps the standard
os module, and forbids usage of methods that lack support for these Windows
security features.

As a developer, when working on Certbot or its plugins, you must use certbot.compat.os
in every place you would need os (eg. from certbot.compat import os instead of
import os). Otherwise the tests will fail when your PR is submitted.

Mypy type annotations

Certbot uses the mypy [https://mypy.readthedocs.io] static type checker. Python 3 natively supports official type annotations,
which can then be tested for consistency using mypy. Mypy does some type checks even without type
annotations; we can find bugs in Certbot even without a fully annotated codebase.

Zulip wrote a great guide [https://blog.zulip.org/2016/10/13/static-types-in-python-oh-mypy/] to using mypy. It’s useful, but you don’t have to read the whole thing
to start contributing to Certbot.

To run mypy on Certbot, use tox -e mypy on a machine that has Python 3 installed.

Also note that OpenSSL, which we rely on, has type definitions for crypto but not SSL. We use both.
Those imports should look like this:

from OpenSSL import crypto
from OpenSSL import SSL

Submitting a pull request

Steps:

	Write your code! When doing this, you should add mypy type annotations for any functions you add or modify. You can check that
you’ve done this correctly by running tox -e mypy on a machine that has
Python 3 installed.

	Make sure your environment is set up properly and that you’re in your
virtualenv. You can do this by following the instructions in the
Getting Started section.

	Run tox -e lint to check for pylint errors. Fix any errors.

	Run tox --skip-missing-interpreters to run the entire test suite
including coverage. The --skip-missing-interpreters argument ignores
missing versions of Python needed for running the tests. Fix any errors.

	If any documentation should be added or updated as part of the changes you
have made, please include the documentation changes in your PR.

	Submit the PR. Once your PR is open, please do not force push to the branch
containing your pull request to squash or amend commits. We use squash
merges [https://github.com/blog/2141-squash-your-commits] on PRs and
rewriting commits makes changes harder to track between reviews.

	Did your tests pass on Azure Pipelines? If they didn’t, fix any errors.

Asking for help

If you have any questions while working on a Certbot issue, don’t hesitate to
ask for help! You can do this in the Certbot channel in EFF’s Mattermost
instance for its open source projects as described below.

You can get involved with several of EFF’s software projects such as Certbot at
the EFF Open Source Contributor Chat Platform [https://opensource.eff.org/signup_user_complete/?id=6iqur37ucfrctfswrs14iscobw].
By signing up for the EFF Open Source Contributor Chat Platform, you consent to
share your personal information with the Electronic Frontier Foundation, which
is the operator and data controller for this platform. The channels will be
available both to EFF, and to other users of EFFOSCCP, who may use or disclose
information in these channels outside of EFFOSCCP. EFF will use your
information, according to the Privacy Policy [https://www.eff.org/policy],
to further the mission of EFF, including hosting and moderating the discussions
on this platform.

Use of EFFOSCCP is subject to the EFF Code of Conduct [https://www.eff.org/pages/eppcode]. When investigating an alleged Code of
Conduct violation, EFF may review discussion channels or direct messages.

Building the Certbot and DNS plugin snaps

Instructions for how to manually build and run the Certbot snap and the externally
snapped DNS plugins that the Certbot project supplies are located in the README
file at https://github.com/certbot/certbot/tree/master/tools/snap.

Updating the documentation

Many of the packages in the Certbot repository have documentation in a
docs/ directory. This directory is located under the top level directory
for the package. For instance, Certbot’s documentation is under
certbot/docs.

To build the documentation of a package, make sure you have followed the
instructions to set up a local copy of Certbot including activating the
virtual environment. After that, cd to the docs directory you want to build
and run the command:

make clean html

This would generate the HTML documentation in _build/html in your current
docs/ directory.

Certbot’s dependencies

We attempt to pin all of Certbot’s dependencies whenever we can for reliability
and consistency. Some of the places we have Certbot’s dependencies pinned
include our snaps, Docker images, Windows installer, CI, and our development
environments.

In most cases, the file where dependency versions are specified is
tools/requirements.txt. There are two exceptions to this. The first is our
“oldest” tests where tools/oldest_constraints.txt is used instead. The
purpose of the “oldest” tests is to ensure Certbot continues to work with the
oldest versions of our dependencies which we claim to support. The oldest
versions of the dependencies we support should also be declared in our setup.py
files to communicate this information to our users.

The second exception to using tools/requirements.txt is in our unpinned
tests. As of writing this, there is one test we run nightly in CI where we
leave Certbot’s dependencies unpinned. The thinking behind this test is to help
us learn about breaking changes in our dependencies so that we can respond
accordingly.

The choices of whether Certbot’s dependencies are pinned and what file is used
if they are should be automatically handled for you most of the time by
Certbot’s tooling. The way it works though is tools/pip_install.py (which
many of our other tools build on) checks for the presence of environment
variables. If CERTBOT_NO_PIN is set to 1, Certbot’s dependencies will not
be pinned. If that variable is not set and CERTBOT_OLDEST is set to 1,
tools/oldest_constraints.txt will be used as constraints for pip.
Otherwise, tools/requirements.txt is used as constraints.

Updating dependency versions

tools/requirements.txt and tools/oldest_constraints.txt can be updated
using tools/pinning/current/repin.sh and tools/pinning/oldest/repin.sh
respectively. This works by using poetry to generate pinnings based on a
Poetry project defined by the pyproject.toml file in the same directory as
the script. In many cases, you can just run the script to generate updated
dependencies, however, if you need to pin back packages or unpin packages that
were previously restricted to an older version, you will need to modify the
pyproject.toml file. The syntax used by this file is described at
https://python-poetry.org/docs/pyproject/ and how dependencies are specified in
this file is further described at
https://python-poetry.org/docs/dependency-specification/.

If you want to learn more about the design used here, see
tools/pinning/DESIGN.md in the Certbot repo.

Running the client with Docker

You can use Docker Compose to quickly set up an environment for running and
testing Certbot. To install Docker Compose, follow the instructions at
https://docs.docker.com/compose/install/.

Note

Linux users can simply run pip install docker-compose to get
Docker Compose after installing Docker Engine and activating your shell as
described in the Getting Started section.

Now you can develop on your host machine, but run Certbot and test your changes
in Docker. When using docker-compose make sure you are inside your clone of
the Certbot repository. As an example, you can run the following command to
check for linting errors:

docker-compose run --rm --service-ports development bash -c 'tox -e lint'

You can also leave a terminal open running a shell in the Docker container and
modify Certbot code in another window. The Certbot repo on your host machine is
mounted inside of the container so any changes you make immediately take
effect. To do this, run:

docker-compose run --rm --service-ports development bash

Now running the check for linting errors described above is as easy as:

tox -e lint

Packaging Guide

Releases

We release packages and upload them to PyPI (wheels and source tarballs).

	https://pypi.python.org/pypi/acme

	https://pypi.python.org/pypi/certbot

	https://pypi.python.org/pypi/certbot-apache

	https://pypi.python.org/pypi/certbot-nginx

	https://pypi.python.org/pypi/certbot-dns-cloudflare

	https://pypi.python.org/pypi/certbot-dns-cloudxns

	https://pypi.python.org/pypi/certbot-dns-digitalocean

	https://pypi.python.org/pypi/certbot-dns-dnsimple

	https://pypi.python.org/pypi/certbot-dns-dnsmadeeasy

	https://pypi.python.org/pypi/certbot-dns-google

	https://pypi.python.org/pypi/certbot-dns-linode

	https://pypi.python.org/pypi/certbot-dns-luadns

	https://pypi.python.org/pypi/certbot-dns-nsone

	https://pypi.python.org/pypi/certbot-dns-ovh

	https://pypi.python.org/pypi/certbot-dns-rfc2136

	https://pypi.python.org/pypi/certbot-dns-route53

The following scripts are used in the process:

	https://github.com/certbot/certbot/blob/master/tools/release.sh

We use git tags to identify releases, using Semantic Versioning [https://semver.org/]. For
example: v0.11.1.

Since version 1.21.0, our packages are cryptographically signed by one of four
PGP keys:

	BF6BCFC89E90747B9A680FD7B6029E8500F7DB16

	86379B4F0AF371B50CD9E5FF3402831161D1D280

	20F201346BF8F3F455A73F9A780CC99432A28621

	F2871B4152AE13C49519111F447BF683AA3B26C3`

These keys can be found on major key servers and at
https://dl.eff.org/certbot.pub.

Releases before 1.21.0 were signed by the PGP key
A2CFB51FA275A7286234E7B24D17C995CD9775F2 which can still be found on major
key servers.

Notes for package maintainers

	Please use our tagged releases, not master!

	Do not package certbot-compatibility-test as it’s only used internally.

	To run tests on our packages, you should use pytest by running the command python -m pytest. Running pytest directly may not work because PYTHONPATH is not handled the same way and local modules may not be found by the test runner.

	If you’d like to include automated renewal in your package:

	certbot renew -q should be added to crontab or systemd timer.

	A random per-machine time offset should be included to avoid having a large number of your clients hit Let’s Encrypt’s servers simultaneously.

	--preconfigured-renewal should be included on the CLI or in cli.ini for all invocations of Certbot, so that it can adjust its interactive output regarding automated renewal (Certbot >= 1.9.0).

	jws is an internal script for acme module and it doesn’t have to be packaged - it’s mostly for debugging: you can use it as echo foo | jws sign | jws verify.

	Do get in touch with us. We are happy to make any changes that will make packaging easier. If you need to apply some patches don’t do it downstream - make a PR here.

Backwards Compatibility

All Certbot components including acme [https://acme-python.readthedocs.io/],
Certbot, and non-third party plugins follow Semantic
Versioning [https://semver.org/] both for its Python API and for the
application itself. This means that we will not change behavior in a backwards
incompatible way except in a new major version of the project.

Note

None of this applies to the behavior of Certbot distribution
mechanisms such as our snaps or OS packages whose
behavior may change at any time. Semantic versioning only applies to the
common Certbot components that are installed by various distribution
methods.

For Certbot as an application, the command line interface and non-interactive
behavior can be considered stable with two exceptions. The first is that no
aspects of Certbot’s console or log output should be considered stable and it
may change at any time. The second is that Certbot’s behavior should only be
considered stable with certain files but not all. Files with which users should
expect Certbot to maintain its current behavior with are:

	/etc/letsencrypt/live/$domain/{cert,chain,fullchain,privkey}.pem, where
$domain is the certificate name (see Where are my certificates?
for more details)

	CLI configuration files

	Hook directories in /etc/letsencrypt/renewal-hooks

Certbot’s behavior with other files may change at any point.

Another area where Certbot should not be considered stable is its behavior when
not run in non-interactive mode which also may change at any point.

In general, if we’re making a change that we expect will break some users, we
will bump the major version and will have warned about it in a prior release
when possible. For our Python API, we will issue warnings using Python’s
warning module. For application level changes, we will print and log warning
messages.

Resources

Documentation: https://certbot.eff.org/docs

Software project: https://github.com/certbot/certbot

Notes for developers: https://certbot.eff.org/docs/contributing.html

Main Website: https://certbot.eff.org

Let’s Encrypt Website: https://letsencrypt.org

Community: https://community.letsencrypt.org

ACME spec: RFC 8555 [https://tools.ietf.org/html/rfc8555]

ACME working area in github (archived): https://github.com/ietf-wg-acme/acme

[image: Azure Pipelines CI status] [https://dev.azure.com/certbot/certbot/_build?definitionId=5]

API Documentation

	certbot package
	Subpackages
	certbot.compat package
	Submodules

	certbot.display package
	Submodules

	certbot.plugins package
	Submodules

	certbot.tests package
	Submodules

	Submodules
	certbot.achallenges module

	certbot.crypto_util module

	certbot.errors module

	certbot.interfaces module

	certbot.main module

	certbot.ocsp package

	certbot.reverter module

	certbot.util module

certbot package

Certbot client.

Subpackages

	certbot.compat package
	Submodules
	certbot.compat.filesystem module

	certbot.compat.misc module

	certbot.compat.os module

	certbot.display package
	Submodules
	certbot.display.ops module

	certbot.display.util module

	certbot.plugins package
	Submodules
	certbot.plugins.common module

	certbot.plugins.dns_common module

	certbot.plugins.dns_common_lexicon module

	certbot.plugins.dns_test_common module

	certbot.plugins.dns_test_common_lexicon module

	certbot.plugins.enhancements module

	certbot.plugins.storage module

	certbot.plugins.util module

	certbot.tests package
	Submodules
	certbot.tests.acme_util module

	certbot.tests.util module

Submodules

	certbot.achallenges module

	certbot.crypto_util module

	certbot.errors module

	certbot.interfaces module

	certbot.main module

	certbot.ocsp package

	certbot.reverter module

	certbot.util module

certbot.compat package

Compatibility layer to run certbot both on Linux and Windows.

This package contains all logic that needs to be implemented specifically for Linux and for Windows.
Then the rest of certbot code relies on this module to be platform agnostic.

Submodules

	certbot.compat.filesystem module

	certbot.compat.misc module

	certbot.compat.os module

certbot.compat.filesystem module

Compat module to handle files security on Windows and Linux

	
certbot.compat.filesystem.chmod(file_path: str [https://docs.python.org/3/library/stdtypes.html#str], mode: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Apply a POSIX mode on given file_path:

	for Linux, the POSIX mode will be directly applied using chmod,

	for Windows, the POSIX mode will be translated into a Windows DACL that make sense for
Certbot context, and applied to the file using kernel calls.

The definition of the Windows DACL that correspond to a POSIX mode, in the context of Certbot,
is explained at https://github.com/certbot/certbot/issues/6356 and is implemented by the
method _generate_windows_flags().

	Parameters

	
	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the file

	mode (int [https://docs.python.org/3/library/functions.html#int]) – POSIX mode to apply

	
certbot.compat.filesystem.umask(mask: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Set the current numeric umask and return the previous umask. On Linux, the built-in umask
method is used. On Windows, our Certbot-side implementation is used.

	Parameters

	mask (int [https://docs.python.org/3/library/functions.html#int]) – The user file-creation mode mask to apply.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	The previous umask value.

	
certbot.compat.filesystem.copy_ownership_and_apply_mode(src: str [https://docs.python.org/3/library/stdtypes.html#str], dst: str [https://docs.python.org/3/library/stdtypes.html#str], mode: int [https://docs.python.org/3/library/functions.html#int], copy_user: bool [https://docs.python.org/3/library/functions.html#bool], copy_group: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	Copy ownership (user and optionally group on Linux) from the source to the
destination, then apply given mode in compatible way for Linux and Windows.
This replaces the os.chown command.

	Parameters

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the source file

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the destination file

	mode (int [https://docs.python.org/3/library/functions.html#int]) – Permission mode to apply on the destination file

	copy_user (bool [https://docs.python.org/3/library/functions.html#bool]) – Copy user if True [https://docs.python.org/3/library/constants.html#True]

	copy_group (bool [https://docs.python.org/3/library/functions.html#bool]) – Copy group if True [https://docs.python.org/3/library/constants.html#True] on Linux (has no effect on Windows)

	
certbot.compat.filesystem.copy_ownership_and_mode(src: str [https://docs.python.org/3/library/stdtypes.html#str], dst: str [https://docs.python.org/3/library/stdtypes.html#str], copy_user: bool [https://docs.python.org/3/library/functions.html#bool] = True, copy_group: bool [https://docs.python.org/3/library/functions.html#bool] = True) → None [https://docs.python.org/3/library/constants.html#None]

	Copy ownership (user and optionally group on Linux) and mode/DACL
from the source to the destination.

	Parameters

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the source file

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the destination file

	copy_user (bool [https://docs.python.org/3/library/functions.html#bool]) – Copy user if True [https://docs.python.org/3/library/constants.html#True]

	copy_group (bool [https://docs.python.org/3/library/functions.html#bool]) – Copy group if True [https://docs.python.org/3/library/constants.html#True] on Linux (has no effect on Windows)

	
certbot.compat.filesystem.check_mode(file_path: str [https://docs.python.org/3/library/stdtypes.html#str], mode: int [https://docs.python.org/3/library/functions.html#int]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if the given mode matches the permissions of the given file.
On Linux, will make a direct comparison, on Windows, mode will be compared against
the security model.

	Parameters

	
	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of the file

	mode (int [https://docs.python.org/3/library/functions.html#int]) – POSIX mode to test

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	True if the POSIX mode matches the file permissions

	
certbot.compat.filesystem.check_owner(file_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if given file is owned by current user.

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – File path to check

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	True if given file is owned by current user, False otherwise.

	
certbot.compat.filesystem.check_permissions(file_path: str [https://docs.python.org/3/library/stdtypes.html#str], mode: int [https://docs.python.org/3/library/functions.html#int]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if given file has the given mode and is owned by current user.

	Parameters

	
	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – File path to check

	mode (int [https://docs.python.org/3/library/functions.html#int]) – POSIX mode to check

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	True if file has correct mode and owner, False otherwise.

	
certbot.compat.filesystem.open(file_path: str [https://docs.python.org/3/library/stdtypes.html#str], flags: int [https://docs.python.org/3/library/functions.html#int], mode: int [https://docs.python.org/3/library/functions.html#int] = 511) → int [https://docs.python.org/3/library/functions.html#int]

	Wrapper of original os.open function, that will ensure on Windows that given mode
is correctly applied.

	Parameters

	
	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file path to open

	flags (int [https://docs.python.org/3/library/functions.html#int]) – Flags to apply on file while opened

	mode (int [https://docs.python.org/3/library/functions.html#int]) – POSIX mode to apply on file when opened,
Python defaults will be applied if None

	Returns

	the file descriptor to the opened file

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raise

	OSError(errno.EEXIST) if the file already exists and os.O_CREAT & os.O_EXCL are set,
OSError(errno.EACCES) on Windows if the file already exists and is a directory, and
os.O_CREAT is set.

	
certbot.compat.filesystem.makedirs(file_path: str [https://docs.python.org/3/library/stdtypes.html#str], mode: int [https://docs.python.org/3/library/functions.html#int] = 511) → None [https://docs.python.org/3/library/constants.html#None]

	Rewrite of original os.makedirs function, that will ensure on Windows that given mode
is correctly applied.

	Parameters

	
	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file path to open

	mode (int [https://docs.python.org/3/library/functions.html#int]) – POSIX mode to apply on leaf directory when created, Python defaults
will be applied if None

	
certbot.compat.filesystem.mkdir(file_path: str [https://docs.python.org/3/library/stdtypes.html#str], mode: int [https://docs.python.org/3/library/functions.html#int] = 511) → None [https://docs.python.org/3/library/constants.html#None]

	Rewrite of original os.mkdir function, that will ensure on Windows that given mode
is correctly applied.

	Parameters

	
	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file path to open

	mode (int [https://docs.python.org/3/library/functions.html#int]) – POSIX mode to apply on directory when created, Python defaults
will be applied if None

	
certbot.compat.filesystem.replace(src: str [https://docs.python.org/3/library/stdtypes.html#str], dst: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Rename a file to a destination path and handles situations where the destination exists.

	Parameters

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – The current file path.

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new file path.

	
certbot.compat.filesystem.realpath(file_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Find the real path for the given path. This method resolves symlinks, including
recursive symlinks, and is protected against symlinks that creates an infinite loop.

	Parameters

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to resolve

	Returns

	The real path for the given path

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.compat.filesystem.readlink(link_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return a string representing the path to which the symbolic link points.

	Parameters

	link_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The symlink path to resolve

	Returns

	The path the symlink points to

	Returns

	str

	Raise

	ValueError if a long path (260> characters) is encountered on Windows

	
certbot.compat.filesystem.is_executable(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Is path an executable file?

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to test

	Returns

	True if path is an executable file

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
certbot.compat.filesystem.has_world_permissions(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if everybody/world has any right (read/write/execute) on a file given its path.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to test

	Returns

	True if everybody/world has any right to the file

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
certbot.compat.filesystem.compute_private_key_mode(old_key: str [https://docs.python.org/3/library/stdtypes.html#str], base_mode: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Calculate the POSIX mode to apply to a private key given the previous private key.

	Parameters

	
	old_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the previous private key

	base_mode (int [https://docs.python.org/3/library/functions.html#int]) – the minimum modes to apply to a private key

	Returns

	the POSIX mode to apply

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
certbot.compat.filesystem.has_same_ownership(path1: str [https://docs.python.org/3/library/stdtypes.html#str], path2: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return True if the ownership of two files given their respective path is the same.
On Windows, ownership is checked against owner only, since files do not have a group owner.

	Parameters

	
	path1 (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the first file

	path2 (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the second file

	Returns

	True if both files have the same ownership, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
certbot.compat.filesystem.has_min_permissions(path: str [https://docs.python.org/3/library/stdtypes.html#str], min_mode: int [https://docs.python.org/3/library/functions.html#int]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if a file given its path has at least the permissions defined by the given minimal mode.
On Windows, group permissions are ignored since files do not have a group owner.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the file to check

	min_mode (int [https://docs.python.org/3/library/functions.html#int]) – the minimal permissions expected

	Returns

	True if the file matches the minimal permissions expectations, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

certbot.compat.misc module

This compat module handles various platform specific calls that do not fall into one
particular category.

	
certbot.compat.misc.raise_for_non_administrative_windows_rights() → None [https://docs.python.org/3/library/constants.html#None]

	On Windows, raise if current shell does not have the administrative rights.
Do nothing on Linux.

	Raises

	errors.Error – If the current shell does not have administrative rights on Windows.

	
certbot.compat.misc.prepare_virtual_console() → None [https://docs.python.org/3/library/constants.html#None]

	On Windows, ensure that Console Virtual Terminal Sequences are enabled.

	
certbot.compat.misc.readline_with_timeout(timeout: float [https://docs.python.org/3/library/functions.html#float], prompt: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Read user input to return the first line entered, or raise after specified timeout.

	Parameters

	
	timeout (float [https://docs.python.org/3/library/functions.html#float]) – The timeout in seconds given to the user.

	prompt (str [https://docs.python.org/3/library/stdtypes.html#str]) – The prompt message to display to the user.

	Returns

	The first line entered by the user.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.compat.misc.get_default_folder(folder_type: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the relevant default folder for the current OS

	Parameters

	folder_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of folder to retrieve (config, work or logs)

	Returns

	The relevant default folder.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.compat.misc.underscores_for_unsupported_characters_in_path(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Replace unsupported characters in path for current OS by underscores.
:param str path: the path to normalize
:return: the normalized path
:rtype: str

	
certbot.compat.misc.execute_command_status(cmd_name: str [https://docs.python.org/3/library/stdtypes.html#str], shell_cmd: str [https://docs.python.org/3/library/stdtypes.html#str], env: Optional[dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None) → Tuple[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
	Run a command:
	
	on Linux command will be run by the standard shell selected with
subprocess.run(shell=True)

	on Windows command will be run in a Powershell shell

This differs from execute_command: it returns the exit code, and does not log the result
and output of the command.

	Parameters

	
	cmd_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the user facing name of the hook being run

	shell_cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – shell command to execute

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – environ to pass into subprocess.run

	Returns

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] (int [https://docs.python.org/3/library/functions.html#int] returncode, str [https://docs.python.org/3/library/stdtypes.html#str] stderr, str [https://docs.python.org/3/library/stdtypes.html#str] stdout)

	
certbot.compat.misc.execute_command(cmd_name: str [https://docs.python.org/3/library/stdtypes.html#str], shell_cmd: str [https://docs.python.org/3/library/stdtypes.html#str], env: Optional[dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None) → Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
	Run a command:
	
	on Linux command will be run by the standard shell selected with
subprocess.run(shell=True)

	on Windows command will be run in a Powershell shell

This differs from execute_command: it returns the exit code, and does not log the result
and output of the command.

	Parameters

	
	cmd_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the user facing name of the hook being run

	shell_cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – shell command to execute

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – environ to pass into subprocess.run

	Returns

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] (str [https://docs.python.org/3/library/stdtypes.html#str] stderr, str [https://docs.python.org/3/library/stdtypes.html#str] stdout)

certbot.compat.os module

This compat modules is a wrapper of the core os module that forbids usage of specific operations
(e.g. chown, chmod, getuid) that would be harmful to the Windows file security model of Certbot.
This module is intended to replace standard os module throughout certbot projects (except acme).

This module has the same API as the os module in the Python standard library
except for the functions defined below.

isort:skip_file

	
certbot.compat.os.access(*unused_args, **unused_kwargs)

	Method os.access() is forbidden

	
certbot.compat.os.chmod(*unused_args, **unused_kwargs)

	Method os.chmod() is forbidden

	
certbot.compat.os.chown(*unused_args, **unused_kwargs)

	Method os.chown() is forbidden

	
certbot.compat.os.fstat(*unused_args, **unused_kwargs)

	Method os.stat() is forbidden

	
certbot.compat.os.mkdir(*unused_args, **unused_kwargs)

	Method os.mkdir() is forbidden

	
certbot.compat.os.open(*unused_args, **unused_kwargs)

	Method os.open() is forbidden

	
certbot.compat.os.rename(*unused_args, **unused_kwargs)

	Method os.rename() is forbidden

	
certbot.compat.os.replace(*unused_args, **unused_kwargs)

	Method os.replace() is forbidden

	
certbot.compat.os.stat(*unused_args, **unused_kwargs)

	Method os.stat() is forbidden

	
certbot.compat.os.umask(*unused_args, **unused_kwargs)

	Method os.chmod() is forbidden

	
certbot.compat.os.makedirs(*unused_args, **unused_kwargs)

	Method os.makedirs() is forbidden

certbot.display package

Certbot display utilities.

Submodules

	certbot.display.ops module

	certbot.display.util module

certbot.display.ops module

Contains UI methods for LE user operations.

	
certbot.display.ops.get_email(invalid: bool [https://docs.python.org/3/library/functions.html#bool] = False, optional: bool [https://docs.python.org/3/library/functions.html#bool] = True) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Prompt for valid email address.

	Parameters

	
	invalid (bool [https://docs.python.org/3/library/functions.html#bool]) – True if an invalid address was provided by the user

	optional (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the user can use
–register-unsafely-without-email to avoid providing an e-mail

	Returns

	e-mail address

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	errors.Error – if the user cancels

	
certbot.display.ops.choose_account(accounts: List[certbot._internal.account.Account]) → Optional[certbot._internal.account.Account]

	Choose an account.

	Parameters

	accounts (list [https://docs.python.org/3/library/stdtypes.html#list]) – Containing at least one
Account

	
certbot.display.ops.choose_values(values: List[str [https://docs.python.org/3/library/stdtypes.html#str]], question: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Display screen to let user pick one or multiple values from the provided
list.

	Parameters

	
	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – Values to select from

	question (str [https://docs.python.org/3/library/stdtypes.html#str]) – Question to ask to user while choosing values

	Returns

	List of selected values

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
certbot.display.ops.choose_names(installer: Optional[certbot.interfaces.Installer], question: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Display screen to select domains to validate.

	Parameters

	
	installer (certbot.interfaces.Installer) – An installer object

	question (str [https://docs.python.org/3/library/stdtypes.html#str]) – Overriding default question to ask the user if asked
to choose from domain names.

	Returns

	List of selected names

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.display.ops.get_valid_domains(domains: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]) → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
	Helper method for choose_names that implements basic checks
	on domain names

	Parameters

	domains (list [https://docs.python.org/3/library/stdtypes.html#list]) – Domain names to validate

	Returns

	List of valid domains

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
certbot.display.ops.success_installation(domains: List[str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None]

	Display a box confirming the installation of HTTPS.

	Parameters

	domains (list [https://docs.python.org/3/library/stdtypes.html#list]) – domain names which were enabled

	
certbot.display.ops.success_renewal(unused_domains: List[str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None]

	Display a box confirming the renewal of an existing certificate.

	Parameters

	domains (list [https://docs.python.org/3/library/stdtypes.html#list]) – domain names which were renewed

	
certbot.display.ops.success_revocation(cert_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Display a message confirming a certificate has been revoked.

	Parameters

	cert_path (list [https://docs.python.org/3/library/stdtypes.html#list]) – path to certificate which was revoked.

	
certbot.display.ops.report_executed_command(command_name: str [https://docs.python.org/3/library/stdtypes.html#str], returncode: int [https://docs.python.org/3/library/functions.html#int], stdout: str [https://docs.python.org/3/library/stdtypes.html#str], stderr: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Display a message describing the success or failure of an executed process (e.g. hook).

	Parameters

	
	command_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Human-readable description of the executed command

	returncode (int [https://docs.python.org/3/library/functions.html#int]) – The exit code of the executed command

	stdout (str [https://docs.python.org/3/library/stdtypes.html#str]) – The stdout output of the executed command

	stderr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The stderr output of the executed command

	
certbot.display.ops.validated_input(validator: Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], Any], *args: Any, **kwargs: Any) → Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Like input_text, but with validation.

	Parameters

	
	validator (callable) – A method which will be called on the
supplied input. If the method raises an errors.Error, its
text will be displayed and the user will be re-prompted.

	*args (list [https://docs.python.org/3/library/stdtypes.html#list]) – Arguments to be passed to input_text.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Arguments to be passed to input_text.

	Returns

	as input_text

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
certbot.display.ops.validated_directory(validator: Callable[[str [https://docs.python.org/3/library/stdtypes.html#str]], Any], *args: Any, **kwargs: Any) → Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Like directory_select, but with validation.

	Parameters

	
	validator (callable) – A method which will be called on the
supplied input. If the method raises an errors.Error, its
text will be displayed and the user will be re-prompted.

	*args (list [https://docs.python.org/3/library/stdtypes.html#list]) – Arguments to be passed to directory_select.

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Arguments to be passed to
directory_select.

	Returns

	as directory_select

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

certbot.display.util module

Internal class delegating to a module, and displaying warnings when attributes
related to deprecated attributes in the certbot.display.util module.

	
certbot.display.util.OK = 'ok'

	Display exit code indicating user acceptance.

	
certbot.display.util.CANCEL = 'cancel'

	Display exit code for a user canceling the display.

	
certbot.display.util.HELP = 'help'

	Display exit code when for when the user requests more help. (UNUSED)

	
certbot.display.util.ESC = 'esc'

	Display exit code when the user hits Escape (UNUSED)

	
certbot.display.util.notify(msg: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Display a basic status message.

	Parameters

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – message to display

	
certbot.display.util.notification(message: str [https://docs.python.org/3/library/stdtypes.html#str], pause: bool [https://docs.python.org/3/library/functions.html#bool] = True, wrap: bool [https://docs.python.org/3/library/functions.html#bool] = True, force_interactive: bool [https://docs.python.org/3/library/functions.html#bool] = False, decorate: bool [https://docs.python.org/3/library/functions.html#bool] = True) → None [https://docs.python.org/3/library/constants.html#None]

	Displays a notification and waits for user acceptance.

	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Message to display

	pause (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not the program should pause for the
user’s confirmation

	wrap (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not the application should wrap text

	force_interactive (bool [https://docs.python.org/3/library/functions.html#bool]) – True if it’s safe to prompt the user
because it won’t cause any workflow regressions

	decorate (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to surround the message with a
decorated frame

	
certbot.display.util.menu(message: str [https://docs.python.org/3/library/stdtypes.html#str], choices: Union[List[str [https://docs.python.org/3/library/stdtypes.html#str]], List[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]], default: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None, cli_flag: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, force_interactive: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]

	Display a menu.

	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – title of menu

	choices (list of tuples (tag, item) or
list of descriptions (tags will be enumerated)) – Menu lines, len must be > 0

	default – default value to return, if interaction is not possible

	cli_flag (str [https://docs.python.org/3/library/stdtypes.html#str]) – option used to set this value with the CLI

	force_interactive (bool [https://docs.python.org/3/library/functions.html#bool]) – True if it’s safe to prompt the user
because it won’t cause any workflow regressions

	Returns

	tuple of (code [https://docs.python.org/3/library/code.html#module-code], index) where
code [https://docs.python.org/3/library/code.html#module-code] - str display exit code
index - int index of the user’s selection

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
certbot.display.util.input_text(message: str [https://docs.python.org/3/library/stdtypes.html#str], default: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, cli_flag: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, force_interactive: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Accept input from the user.

	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – message to display to the user

	default – default value to return, if interaction is not possible

	cli_flag (str [https://docs.python.org/3/library/stdtypes.html#str]) – option used to set this value with the CLI

	force_interactive (bool [https://docs.python.org/3/library/functions.html#bool]) – True if it’s safe to prompt the user
because it won’t cause any workflow regressions

	Returns

	tuple of (code [https://docs.python.org/3/library/code.html#module-code], input [https://docs.python.org/3/library/functions.html#input]) where
code [https://docs.python.org/3/library/code.html#module-code] - str display exit code
input [https://docs.python.org/3/library/functions.html#input] - str of the user’s input

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
certbot.display.util.yesno(message: str [https://docs.python.org/3/library/stdtypes.html#str], yes_label: str [https://docs.python.org/3/library/stdtypes.html#str] = 'Yes', no_label: str [https://docs.python.org/3/library/stdtypes.html#str] = 'No', default: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = None, cli_flag: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, force_interactive: bool [https://docs.python.org/3/library/functions.html#bool] = False) → bool [https://docs.python.org/3/library/functions.html#bool]

	Query the user with a yes/no question.

Yes and No label must begin with different letters, and must contain at
least one letter each.

	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – question for the user

	yes_label (str [https://docs.python.org/3/library/stdtypes.html#str]) – Label of the “Yes” parameter

	no_label (str [https://docs.python.org/3/library/stdtypes.html#str]) – Label of the “No” parameter

	default – default value to return, if interaction is not possible

	cli_flag (str [https://docs.python.org/3/library/stdtypes.html#str]) – option used to set this value with the CLI

	force_interactive (bool [https://docs.python.org/3/library/functions.html#bool]) – True if it’s safe to prompt the user
because it won’t cause any workflow regressions

	Returns

	True for “Yes”, False for “No”

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
certbot.display.util.checklist(message: str [https://docs.python.org/3/library/stdtypes.html#str], tags: List[str [https://docs.python.org/3/library/stdtypes.html#str]], default: Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, cli_flag: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, force_interactive: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Display a checklist.

	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Message to display to user

	tags (list [https://docs.python.org/3/library/stdtypes.html#list]) – str [https://docs.python.org/3/library/stdtypes.html#str] tags to select, len(tags) > 0

	default – default value to return, if interaction is not possible

	cli_flag (str [https://docs.python.org/3/library/stdtypes.html#str]) – option used to set this value with the CLI

	force_interactive (bool [https://docs.python.org/3/library/functions.html#bool]) – True if it’s safe to prompt the user
because it won’t cause any workflow regressions

	Returns

	tuple of (code [https://docs.python.org/3/library/code.html#module-code], tags) where
code [https://docs.python.org/3/library/code.html#module-code] - str display exit code
tags - list of selected tags

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
certbot.display.util.directory_select(message: str [https://docs.python.org/3/library/stdtypes.html#str], default: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, cli_flag: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, force_interactive: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Display a directory selection screen.

	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – prompt to give the user

	default – default value to return, if interaction is not possible

	cli_flag (str [https://docs.python.org/3/library/stdtypes.html#str]) – option used to set this value with the CLI

	force_interactive (bool [https://docs.python.org/3/library/functions.html#bool]) – True if it’s safe to prompt the user
because it won’t cause any workflow regressions

	Returns

	tuple of the form (code [https://docs.python.org/3/library/code.html#module-code], string [https://docs.python.org/3/library/string.html#module-string]) where
code [https://docs.python.org/3/library/code.html#module-code] - display exit code
string [https://docs.python.org/3/library/string.html#module-string] - input entered by the user

	
certbot.display.util.assert_valid_call(prompt: str [https://docs.python.org/3/library/stdtypes.html#str], default: str [https://docs.python.org/3/library/stdtypes.html#str], cli_flag: str [https://docs.python.org/3/library/stdtypes.html#str], force_interactive: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	Verify that provided arguments is a valid display call.

	Parameters

	
	prompt (str [https://docs.python.org/3/library/stdtypes.html#str]) – prompt for the user

	default – default answer to prompt

	cli_flag (str [https://docs.python.org/3/library/stdtypes.html#str]) – command line option for setting an answer
to this question

	force_interactive (bool [https://docs.python.org/3/library/functions.html#bool]) – if interactivity is forced

certbot.plugins package

Certbot plugins.

Submodules

	certbot.plugins.common module

	certbot.plugins.dns_common module

	certbot.plugins.dns_common_lexicon module

	certbot.plugins.dns_test_common module

	certbot.plugins.dns_test_common_lexicon module

	certbot.plugins.enhancements module

	certbot.plugins.storage module

	certbot.plugins.util module

certbot.plugins.common module

Plugin common functions.

	
certbot.plugins.common.option_namespace(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	ArgumentParser options namespace (prefix of all options).

	
certbot.plugins.common.dest_namespace(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	ArgumentParser dest namespace (prefix of all destinations).

	
class certbot.plugins.common.Plugin(config: certbot.configuration.NamespaceConfig, name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: certbot.interfaces.Plugin

Generic plugin.

	
abstract classmethod add_parser_arguments(add: Callable[[...], None [https://docs.python.org/3/library/constants.html#None]]) → None [https://docs.python.org/3/library/constants.html#None]

	Add plugin arguments to the CLI argument parser.

	Parameters

	add (callable) – Function that proxies calls to
argparse.ArgumentParser.add_argument [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument] prepending options
with unique plugin name prefix.

	
classmethod inject_parser_options(parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Inject parser options.

See inject_parser_options for docs.

	
property option_namespace: str [https://docs.python.org/3/library/stdtypes.html#str]

	ArgumentParser options namespace (prefix of all options).

	
option_name(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Option name (include plugin namespace).

	
property dest_namespace: str [https://docs.python.org/3/library/stdtypes.html#str]

	ArgumentParser dest namespace (prefix of all destinations).

	
dest(var: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Find a destination for given variable var.

	
conf(var: str [https://docs.python.org/3/library/stdtypes.html#str]) → Any

	Find a configuration value for variable var.

	
auth_hint(failed_achalls: List[certbot.achallenges.AnnotatedChallenge]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable string to help the user troubleshoot the authenticator.

Shown to the user if one or more of the attempted challenges were not a success.

Should describe, in simple language, what the authenticator tried to do, what went
wrong and what the user should try as their “next steps”.

TODO: auth_hint belongs in Authenticator but can’t be added until the next major
version of Certbot. For now, it lives in .Plugin and auth_handler will only call it
on authenticators that subclass .Plugin. For now, inherit from Plugin to implement
and/or override the method.

	Parameters

	failed_achalls (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of one or more failed challenges
(achallenges.AnnotatedChallenge subclasses).

	Rtype str

	

	
class certbot.plugins.common.Installer(*args: Any, **kwargs: Any)

	Bases: certbot.interfaces.Installer, certbot.plugins.common.Plugin

An installer base class with reverter and ssl_dhparam methods defined.

Installer plugins do not have to inherit from this class.

	
add_to_checkpoint(save_files: Set[str [https://docs.python.org/3/library/stdtypes.html#str]], save_notes: str [https://docs.python.org/3/library/stdtypes.html#str], temporary: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Add files to a checkpoint.

	Parameters

	
	save_files (set [https://docs.python.org/3/library/stdtypes.html#set]) – set of filepaths to save

	save_notes (str [https://docs.python.org/3/library/stdtypes.html#str]) – notes about changes during the save

	temporary (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the files should be added to a
temporary checkpoint rather than a permanent one. This is
usually used for changes that will soon be reverted.

	Raises

	errors.PluginError – when unable to add to checkpoint

	
finalize_checkpoint(title: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Timestamp and save changes made through the reverter.

	Parameters

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title describing checkpoint

	Raises

	errors.PluginError – when an error occurs

	
recovery_routine() → None [https://docs.python.org/3/library/constants.html#None]

	Revert all previously modified files.

Reverts all modified files that have not been saved as a checkpoint

	Raises

	errors.PluginError – If unable to recover the configuration

	
revert_temporary_config() → None [https://docs.python.org/3/library/constants.html#None]

	Rollback temporary checkpoint.

	Raises

	errors.PluginError – when unable to revert config

	
rollback_checkpoints(rollback: int [https://docs.python.org/3/library/functions.html#int] = 1) → None [https://docs.python.org/3/library/constants.html#None]

	Rollback saved checkpoints.

	Parameters

	rollback (int [https://docs.python.org/3/library/functions.html#int]) – Number of checkpoints to revert

	Raises

	errors.PluginError – If there is a problem with the input or
the function is unable to correctly revert the configuration

	
property ssl_dhparams: str [https://docs.python.org/3/library/stdtypes.html#str]

	Full absolute path to ssl_dhparams file.

	
property updated_ssl_dhparams_digest: str [https://docs.python.org/3/library/stdtypes.html#str]

	Full absolute path to digest of updated ssl_dhparams file.

	
install_ssl_dhparams() → None [https://docs.python.org/3/library/constants.html#None]

	Copy Certbot’s ssl_dhparams file into the system’s config dir if required.

	
class certbot.plugins.common.Configurator(*args: Any, **kwargs: Any)

	Bases: certbot.plugins.common.Installer, certbot.interfaces.Authenticator

A plugin that extends certbot.plugins.common.Installer
and implements certbot.interfaces.Authenticator

	
class certbot.plugins.common.Addr(tup: Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]], ipv6: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents an virtual host address.

	Parameters

	
	addr (str [https://docs.python.org/3/library/stdtypes.html#str]) – addr part of vhost address

	port (str [https://docs.python.org/3/library/stdtypes.html#str]) – port number or *, or “”

	
classmethod fromstring(str_addr: str [https://docs.python.org/3/library/stdtypes.html#str]) → Optional[certbot.plugins.common.GenericAddr]

	Initialize Addr from string.

	
normalized_tuple() → Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Normalized representation of addr/port tuple

	
get_addr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return addr part of Addr object.

	
get_port() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return port.

	
get_addr_obj(port: str [https://docs.python.org/3/library/stdtypes.html#str]) → certbot.plugins.common.GenericAddr

	Return new address object with same addr and new port.

	
get_ipv6_exploded() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return IPv6 in normalized form

	
class certbot.plugins.common.ChallengePerformer(configurator: certbot.plugins.common.Configurator)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Abstract base for challenge performers.

	Variables

	
	configurator – Authenticator and installer plugin

	achalls (list [https://docs.python.org/3/library/stdtypes.html#list] of KeyAuthorizationAnnotatedChallenge) – Annotated challenges

	indices (list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int]) – Holds the indices of challenges from a larger array
so the user of the class doesn’t have to.

	
add_chall(achall: certbot.achallenges.KeyAuthorizationAnnotatedChallenge, idx: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Store challenge to be performed when perform() is called.

	Parameters

	
	achall (KeyAuthorizationAnnotatedChallenge) – Annotated
challenge.

	idx (int [https://docs.python.org/3/library/functions.html#int]) – index to challenge in a larger array

	
perform() → List[acme.challenges.KeyAuthorizationChallengeResponse [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.KeyAuthorizationChallengeResponse]]

	Perform all added challenges.

	Returns

	challenge responses

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] of acme.challenges.KeyAuthorizationChallengeResponse [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.KeyAuthorizationChallengeResponse]

	
certbot.plugins.common.install_version_controlled_file(dest_path: str [https://docs.python.org/3/library/stdtypes.html#str], digest_path: str [https://docs.python.org/3/library/stdtypes.html#str], src_path: str [https://docs.python.org/3/library/stdtypes.html#str], all_hashes: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None]

	Copy a file into an active location (likely the system’s config dir) if required.

	Parameters

	
	dest_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – destination path for version controlled file

	digest_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to save a digest of the file in

	src_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to version controlled file found in distribution

	all_hashes (list [https://docs.python.org/3/library/stdtypes.html#list]) – hashes of every released version of the file

	
certbot.plugins.common.dir_setup(test_dir: str [https://docs.python.org/3/library/stdtypes.html#str], pkg: str [https://docs.python.org/3/library/stdtypes.html#str]) → Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Setup the directories necessary for the configurator.

certbot.plugins.dns_common module

Common code for DNS Authenticator Plugins.

	
class certbot.plugins.dns_common.DNSAuthenticator(config: certbot.configuration.NamespaceConfig, name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: certbot.plugins.common.Plugin, certbot.interfaces.Authenticator

Base class for DNS Authenticators

	
classmethod add_parser_arguments(add: Callable[[...], None [https://docs.python.org/3/library/constants.html#None]], default_propagation_seconds: int [https://docs.python.org/3/library/functions.html#int] = 10) → None [https://docs.python.org/3/library/constants.html#None]

	Add plugin arguments to the CLI argument parser.

	Parameters

	add (callable) – Function that proxies calls to
argparse.ArgumentParser.add_argument [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument] prepending options
with unique plugin name prefix.

	
auth_hint(failed_achalls: List[certbot.achallenges.AnnotatedChallenge]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	See certbot.plugins.common.Plugin.auth_hint.

	
get_chall_pref(unused_domain: str [https://docs.python.org/3/library/stdtypes.html#str]) → Iterable[Type[acme.challenges.Challenge [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.Challenge]]]

	Return collections.Iterable of challenge preferences.

	Parameters

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – Domain for which challenge preferences are sought.

	Returns

	collections.Iterable of challenge types (subclasses of
acme.challenges.Challenge [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.Challenge]) with the most
preferred challenges first. If a type is not specified, it means the
Authenticator cannot perform the challenge.

	Return type

	collections.Iterable

	
prepare() → None [https://docs.python.org/3/library/constants.html#None]

	Prepare the plugin.

Finish up any additional initialization.

	Raises

	
	PluginError – when full initialization cannot be completed.

	MisconfigurationError – when full initialization cannot be completed. Plugin will
be displayed on a list of available plugins.

	NoInstallationError – when the necessary programs/files cannot be located. Plugin
will NOT be displayed on a list of available plugins.

	NotSupportedError – when the installation is recognized, but the version is not
currently supported.

	
more_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable string to help the user.

Should describe the steps taken and any relevant info to help the user
decide which plugin to use.

	Rtype str

	

	
perform(achalls: List[certbot.achallenges.AnnotatedChallenge]) → List[acme.challenges.ChallengeResponse [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.ChallengeResponse]]

	Perform the given challenge.

	Parameters

	achalls (list [https://docs.python.org/3/library/stdtypes.html#list]) – Non-empty (guaranteed) list of
AnnotatedChallenge
instances, such that it contains types found within
get_chall_pref() only.

	Returns

	list of ACME
ChallengeResponse [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.ChallengeResponse] instances corresponding to each provided
Challenge [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.Challenge].

	Return type

	collections.List of
acme.challenges.ChallengeResponse [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.ChallengeResponse],
where responses are required to be returned in
the same order as corresponding input challenges

	Raises

	PluginError – If some or all challenges cannot be performed

	
cleanup(achalls: List[certbot.achallenges.AnnotatedChallenge]) → None [https://docs.python.org/3/library/constants.html#None]

	Revert changes and shutdown after challenges complete.

This method should be able to revert all changes made by
perform, even if perform exited abnormally.

	Parameters

	achalls (list [https://docs.python.org/3/library/stdtypes.html#list]) – Non-empty (guaranteed) list of
AnnotatedChallenge
instances, a subset of those previously passed to perform().

	Raises

	PluginError – if original configuration cannot be restored

	
class certbot.plugins.dns_common.CredentialsConfiguration(filename: str, mapper: Callable[[str], str] = <function CredentialsConfiguration.<lambda>>)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents a user-supplied filed which stores API credentials.

	
require(required_variables: Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None]

	Ensures that the supplied set of variables are all present in the file.

	Parameters

	required_variables (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Map of variable which must be present to error to display.

	Raises

	errors.PluginError – If one or more are missing.

	
conf(var: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Find a configuration value for variable var, as transformed by mapper.

	Parameters

	var (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable to get.

	Returns

	The value of the variable.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.plugins.dns_common.validate_file(filename: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Ensure that the specified file exists.

	
certbot.plugins.dns_common.validate_file_permissions(filename: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Ensure that the specified file exists and warn about unsafe permissions.

	
certbot.plugins.dns_common.base_domain_name_guesses(domain: str [https://docs.python.org/3/library/stdtypes.html#str]) → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Return a list of progressively less-specific domain names.

One of these will probably be the domain name known to the DNS provider.

	Example

	

>>> base_domain_name_guesses('foo.bar.baz.example.com')
['foo.bar.baz.example.com', 'bar.baz.example.com', 'baz.example.com', 'example.com', 'com']

	Parameters

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – The domain for which to return guesses.

	Returns

	The a list of less specific domain names.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

certbot.plugins.dns_common_lexicon module

Common code for DNS Authenticator Plugins built on Lexicon.

	
class certbot.plugins.dns_common_lexicon.LexiconClient

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Encapsulates all communication with a DNS provider via Lexicon.

	
add_txt_record(domain: str [https://docs.python.org/3/library/stdtypes.html#str], record_name: str [https://docs.python.org/3/library/stdtypes.html#str], record_content: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Add a TXT record using the supplied information.

	Parameters

	
	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – The domain to use to look up the managed zone.

	record_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The record name (typically beginning with ‘_acme-challenge.’).

	record_content (str [https://docs.python.org/3/library/stdtypes.html#str]) – The record content (typically the challenge validation).

	Raises

	errors.PluginError – if an error occurs communicating with the DNS Provider API

	
del_txt_record(domain: str [https://docs.python.org/3/library/stdtypes.html#str], record_name: str [https://docs.python.org/3/library/stdtypes.html#str], record_content: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Delete a TXT record using the supplied information.

	Parameters

	
	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – The domain to use to look up the managed zone.

	record_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The record name (typically beginning with ‘_acme-challenge.’).

	record_content (str [https://docs.python.org/3/library/stdtypes.html#str]) – The record content (typically the challenge validation).

	Raises

	errors.PluginError – if an error occurs communicating with the DNS Provider API

	
certbot.plugins.dns_common_lexicon.build_lexicon_config(lexicon_provider_name: str [https://docs.python.org/3/library/stdtypes.html#str], lexicon_options: Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Any], provider_options: Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) → Union[None [https://docs.python.org/3/library/constants.html#None], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]

	Convenient function to build a Lexicon 2.x/3.x config object.
:param str lexicon_provider_name: the name of the lexicon provider to use
:param dict lexicon_options: options specific to lexicon
:param dict provider_options: options specific to provider
:return: configuration to apply to the provider
:rtype: ConfigurationResolver or dict

certbot.plugins.dns_test_common module

Base test class for DNS authenticators.

	
class certbot.plugins.dns_test_common.BaseAuthenticatorTest

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A base test class to reduce duplication between test code for DNS Authenticator Plugins.

	Assumes:
	
	That subclasses also subclass unittest.TestCase

	That the authenticator is stored as self.auth

	
achall = KeyAuthorizationAnnotatedChallenge(challb=DNS01(token=b'17817c66b60ce2e4012dfad92657527a'), domain='example.com', account_key=JWKRSA(key=<ComparableRSAKey(<cryptography.hazmat.backends.openssl.rsa._RSAPrivateKey object>)>))

	

	
test_more_info() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_get_chall_pref() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_parser_arguments() → None [https://docs.python.org/3/library/constants.html#None]

	

	
certbot.plugins.dns_test_common.write(values: Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Any], path: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Write the specified values to a config file.

	Parameters

	
	values (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A map of values to write.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where to write the values.

certbot.plugins.dns_test_common_lexicon module

Base test class for DNS authenticators built on Lexicon.

	
class certbot.plugins.dns_test_common_lexicon.BaseLexiconAuthenticatorTest

	Bases: certbot.plugins.dns_test_common.BaseAuthenticatorTest

	
test_perform(unused_mock_get_utility: Any) → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_cleanup() → None [https://docs.python.org/3/library/constants.html#None]

	

	
class certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
DOMAIN_NOT_FOUND = Exception('No domain found')

	

	
GENERIC_ERROR

	alias of requests.exceptions.RequestException

	
LOGIN_ERROR = HTTPError('400 Client Error: ...')

	

	
UNKNOWN_LOGIN_ERROR = HTTPError('500 Surprise! Error: ...')

	

	
record_prefix = '_acme-challenge'

	

	
record_name = '_acme-challenge.example.com'

	

	
record_content = 'bar'

	

	
test_add_txt_record() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_add_txt_record_try_twice_to_find_domain() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_add_txt_record_fail_to_find_domain() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_add_txt_record_fail_to_authenticate() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_add_txt_record_fail_to_authenticate_with_unknown_error() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_add_txt_record_error_finding_domain() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_add_txt_record_error_adding_record() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_del_txt_record() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_del_txt_record_fail_to_find_domain() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_del_txt_record_fail_to_authenticate() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_del_txt_record_fail_to_authenticate_with_unknown_error() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_del_txt_record_error_finding_domain() → None [https://docs.python.org/3/library/constants.html#None]

	

	
test_del_txt_record_error_deleting_record() → None [https://docs.python.org/3/library/constants.html#None]

	

certbot.plugins.enhancements module

New interface style Certbot enhancements

	
certbot.plugins.enhancements.ENHANCEMENTS = ['redirect', 'ensure-http-header', 'ocsp-stapling']

	List of possible certbot.interfaces.Installer
enhancements.

List of expected options parameters:
- redirect: None
- ensure-http-header: name of header (i.e. Strict-Transport-Security)
- ocsp-stapling: certificate chain file path

	
certbot.plugins.enhancements.enabled_enhancements(config: certbot.configuration.NamespaceConfig) → Generator[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Generator to yield the enabled new style enhancements.

	Parameters

	config (certbot.configuration.NamespaceConfig) – Configuration.

	
certbot.plugins.enhancements.are_requested(config: certbot.configuration.NamespaceConfig) → bool [https://docs.python.org/3/library/functions.html#bool]

	Checks if one or more of the requested enhancements are those of the new
enhancement interfaces.

	Parameters

	config (certbot.configuration.NamespaceConfig) – Configuration.

	
certbot.plugins.enhancements.are_supported(config: certbot.configuration.NamespaceConfig, installer: Optional[certbot.interfaces.Installer]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Checks that all of the requested enhancements are supported by the
installer.

	Parameters

	
	config (certbot.configuration.NamespaceConfig) – Configuration.

	installer (interfaces.Installer) – Installer object

	Returns

	If all the requested enhancements are supported by the installer

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
certbot.plugins.enhancements.enable(lineage: Optional[certbot.interfaces.RenewableCert], domains: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]], installer: Optional[certbot.interfaces.Installer], config: certbot.configuration.NamespaceConfig) → None [https://docs.python.org/3/library/constants.html#None]

	Run enable method for each requested enhancement that is supported.

	Parameters

	
	lineage (certbot.interfaces.RenewableCert) – Certificate lineage object

	domains (str [https://docs.python.org/3/library/stdtypes.html#str]) – List of domains in certificate to enhance

	installer (interfaces.Installer) – Installer object

	config (certbot.configuration.NamespaceConfig) – Configuration.

	
certbot.plugins.enhancements.populate_cli(add: Callable[[...], None [https://docs.python.org/3/library/constants.html#None]]) → None [https://docs.python.org/3/library/constants.html#None]

	Populates the command line flags for certbot._internal.cli.HelpfulParser

	Parameters

	add (func) – Add function of certbot._internal.cli.HelpfulParser

	
class certbot.plugins.enhancements.AutoHSTSEnhancement

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Enhancement interface that installer plugins can implement in order to
provide functionality that configures the software to have a
‘Strict-Transport-Security’ with initially low max-age value that will
increase over time.

The plugins implementing new style enhancements are responsible of handling
the saving of configuration checkpoints as well as calling possible restarts
of managed software themselves. For update_autohsts method, the installer may
have to call prepare() to finalize the plugin initialization.

	Methods:
	enable_autohsts is called when the header is initially installed using a
low max-age value.

update_autohsts is called every time when Certbot is run using ‘renew’
verb. The max-age value should be increased over time using this method.

deploy_autohsts is called for every lineage that has had its certificate
renewed. A long HSTS max-age value should be set here, as we should be
confident that the user is able to automatically renew their certificates.

	
abstract update_autohsts(lineage: certbot.interfaces.RenewableCert, *args: Any, **kwargs: Any) → None [https://docs.python.org/3/library/constants.html#None]

	Gets called for each lineage every time Certbot is run with ‘renew’ verb.
Implementation of this method should increase the max-age value.

	Parameters

	lineage (certbot.interfaces.RenewableCert) – Certificate lineage object

Note

prepare() method inherited from interfaces.Plugin might need
to be called manually within implementation of this interface method
to finalize the plugin initialization.

	
abstract deploy_autohsts(lineage: certbot.interfaces.RenewableCert, *args: Any, **kwargs: Any) → None [https://docs.python.org/3/library/constants.html#None]

	Gets called for a lineage when its certificate is successfully renewed.
Long max-age value should be set in implementation of this method.

	Parameters

	lineage (certbot.interfaces.RenewableCert) – Certificate lineage object

	
abstract enable_autohsts(lineage: Optional[certbot.interfaces.RenewableCert], domains: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]], *args: Any, **kwargs: Any) → None [https://docs.python.org/3/library/constants.html#None]

	Enables the AutoHSTS enhancement, installing
Strict-Transport-Security header with a low initial value to be increased
over the subsequent runs of Certbot renew.

	Parameters

	
	lineage (certbot.interfaces.RenewableCert) – Certificate lineage object

	domains (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – List of domains in certificate to enhance

certbot.plugins.storage module

Plugin storage class.

	
class certbot.plugins.storage.PluginStorage(config: certbot.configuration.NamespaceConfig, classkey: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class implementing storage functionality for plugins

	
save() → None [https://docs.python.org/3/library/constants.html#None]

	Saves PluginStorage content to disk

	Raises

	errors.PluginStorageError – when unable to serialize the data
or write it to the filesystem

	
put(key: str [https://docs.python.org/3/library/stdtypes.html#str], value: Any) → None [https://docs.python.org/3/library/constants.html#None]

	Put configuration value to PluginStorage

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key to store the value to

	value – Data to store

	
fetch(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → Any

	Get configuration value from PluginStorage

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key to get value from the storage

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the key doesn’t exist in the storage

certbot.plugins.util module

Plugin utilities.

	
certbot.plugins.util.get_prefixes(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Retrieves all possible path prefixes of a path, in descending order
of length. For instance:

	(Linux) /a/b/c returns ['/a/b/c', '/a/b', '/a', '/']

	(Windows) C:abc returns ['C:abc', 'C:ab', 'C:a', 'C:']

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the path to break into prefixes

	Returns

	all possible path prefixes of given path in descending order

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.plugins.util.path_surgery(cmd: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Attempt to perform PATH surgery to find cmd

Mitigates https://github.com/certbot/certbot/issues/1833

	Parameters

	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – the command that is being searched for in the PATH

	Returns

	True if the operation succeeded, False otherwise

certbot.tests package

Utilities for running Certbot tests

Submodules

	certbot.tests.acme_util module

	certbot.tests.util module

certbot.tests.acme_util module

ACME utilities for testing.

	
certbot.tests.acme_util.gen_combos(challbs: Iterable[acme.messages.ChallengeBody [https://acme-python.readthedocs.io/en/latest/api/messages.html#acme.messages.ChallengeBody]]) → Tuple[Tuple[int [https://docs.python.org/3/library/functions.html#int]], ...]

	Generate natural combinations for challbs.

	
certbot.tests.acme_util.chall_to_challb(chall: acme.challenges.Challenge [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.Challenge], status: acme.messages.Status [https://acme-python.readthedocs.io/en/latest/api/messages.html#acme.messages.Status]) → acme.messages.ChallengeBody [https://acme-python.readthedocs.io/en/latest/api/messages.html#acme.messages.ChallengeBody]

	Return ChallengeBody from Challenge.

	
certbot.tests.acme_util.gen_authzr(authz_status: acme.messages.Status [https://acme-python.readthedocs.io/en/latest/api/messages.html#acme.messages.Status], domain: str [https://docs.python.org/3/library/stdtypes.html#str], challs: Iterable[acme.challenges.Challenge [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.Challenge]], statuses: Iterable[acme.messages.Status [https://acme-python.readthedocs.io/en/latest/api/messages.html#acme.messages.Status]], combos: bool [https://docs.python.org/3/library/functions.html#bool] = True) → acme.messages.AuthorizationResource [https://acme-python.readthedocs.io/en/latest/api/messages.html#acme.messages.AuthorizationResource]

	Generate an authorization resource.

	Parameters

	
	authz_status (acme.messages.Status [https://acme-python.readthedocs.io/en/latest/api/messages.html#acme.messages.Status]) – Status object

	challs (list [https://docs.python.org/3/library/stdtypes.html#list]) – Challenge objects

	statuses (list [https://docs.python.org/3/library/stdtypes.html#list]) – status of each challenge object

	combos (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to add combinations

certbot.tests.util module

Test utilities.

	
class certbot.tests.util.DummyInstaller(*args: Any, **kwargs: Any)

	Bases: certbot.plugins.common.Installer

Dummy installer plugin for test purpose.

	
get_all_names() → Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns all names that may be authenticated.

	Return type

	collections.Iterable of str [https://docs.python.org/3/library/stdtypes.html#str]

	
deploy_cert(domain: str [https://docs.python.org/3/library/stdtypes.html#str], cert_path: str [https://docs.python.org/3/library/stdtypes.html#str], key_path: str [https://docs.python.org/3/library/stdtypes.html#str], chain_path: str [https://docs.python.org/3/library/stdtypes.html#str], fullchain_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Deploy certificate.

	Parameters

	
	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – domain to deploy certificate file

	cert_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – absolute path to the certificate file

	key_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – absolute path to the private key file

	chain_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – absolute path to the certificate chain file

	fullchain_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – absolute path to the certificate fullchain
file (cert plus chain)

	Raises

	PluginError – when cert cannot be deployed

	
enhance(domain: str [https://docs.python.org/3/library/stdtypes.html#str], enhancement: str [https://docs.python.org/3/library/stdtypes.html#str], options: Optional[Union[List[str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Perform a configuration enhancement.

	Parameters

	
	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – domain for which to provide enhancement

	enhancement (str [https://docs.python.org/3/library/stdtypes.html#str]) – An enhancement as defined in
ENHANCEMENTS

	options – Flexible options parameter for enhancement.
Check documentation of
ENHANCEMENTS
for expected options for each enhancement.

	Raises

	PluginError – If Enhancement is not supported, or if
an error occurs during the enhancement.

	
supported_enhancements() → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns a collections.Iterable of supported enhancements.

	Returns

	supported enhancements which should be a subset of
ENHANCEMENTS

	Return type

	collections.Iterable of str [https://docs.python.org/3/library/stdtypes.html#str]

	
save(title: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, temporary: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Saves all changes to the configuration files.

Both title and temporary are needed because a save may be
intended to be permanent, but the save is not ready to be a full
checkpoint.

It is assumed that at most one checkpoint is finalized by this
method. Additionally, if an exception is raised, it is assumed a
new checkpoint was not finalized.

	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – The title of the save. If a title is given, the
configuration will be saved as a new checkpoint and put in a
timestamped directory. title has no effect if temporary is true.

	temporary (bool [https://docs.python.org/3/library/functions.html#bool]) – Indicates whether the changes made will
be quickly reversed in the future (challenges)

	Raises

	PluginError – when save is unsuccessful

	
config_test() → None [https://docs.python.org/3/library/constants.html#None]

	Make sure the configuration is valid.

	Raises

	MisconfigurationError – when the config is not in a usable state

	
restart() → None [https://docs.python.org/3/library/constants.html#None]

	Restart or refresh the server content.

	Raises

	PluginError – when server cannot be restarted

	
classmethod add_parser_arguments(add: Callable[[...], None [https://docs.python.org/3/library/constants.html#None]]) → None [https://docs.python.org/3/library/constants.html#None]

	Add plugin arguments to the CLI argument parser.

	Parameters

	add (callable) – Function that proxies calls to
argparse.ArgumentParser.add_argument [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument] prepending options
with unique plugin name prefix.

	
prepare() → None [https://docs.python.org/3/library/constants.html#None]

	Prepare the plugin.

Finish up any additional initialization.

	Raises

	
	PluginError – when full initialization cannot be completed.

	MisconfigurationError – when full initialization cannot be completed. Plugin will
be displayed on a list of available plugins.

	NoInstallationError – when the necessary programs/files cannot be located. Plugin
will NOT be displayed on a list of available plugins.

	NotSupportedError – when the installation is recognized, but the version is not
currently supported.

	
more_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable string to help the user.

Should describe the steps taken and any relevant info to help the user
decide which plugin to use.

	Rtype str

	

	
certbot.tests.util.vector_path(*names: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Path to a test vector.

	
certbot.tests.util.load_vector(*names: str [https://docs.python.org/3/library/stdtypes.html#str]) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Load contents of a test vector.

	
certbot.tests.util.load_cert(*names: str [https://docs.python.org/3/library/stdtypes.html#str]) → OpenSSL.crypto.X509

	Load certificate.

	
certbot.tests.util.load_csr(*names: str [https://docs.python.org/3/library/stdtypes.html#str]) → OpenSSL.crypto.X509Req

	Load certificate request.

	
certbot.tests.util.load_comparable_csr(*names: str [https://docs.python.org/3/library/stdtypes.html#str]) → josepy.util.ComparableX509

	Load ComparableX509 certificate request.

	
certbot.tests.util.load_rsa_private_key(*names: str [https://docs.python.org/3/library/stdtypes.html#str]) → josepy.util.ComparableRSAKey

	Load RSA private key.

	
certbot.tests.util.load_pyopenssl_private_key(*names: str [https://docs.python.org/3/library/stdtypes.html#str]) → OpenSSL.crypto.PKey

	Load pyOpenSSL private key.

	
certbot.tests.util.make_lineage(config_dir: str [https://docs.python.org/3/library/stdtypes.html#str], testfile: str [https://docs.python.org/3/library/stdtypes.html#str], ec: bool [https://docs.python.org/3/library/functions.html#bool] = False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a lineage defined by testfile.

This creates the archive, live, and renewal directories if
necessary and creates a simple lineage.

	Parameters

	
	config_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the configuration directory

	testfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – configuration file to base the lineage on

	ec (bool [https://docs.python.org/3/library/functions.html#bool]) – True if we generate the lineage with an ECDSA key

	Returns

	path to the renewal conf file for the created lineage

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.tests.util.patch_get_utility(target: str [https://docs.python.org/3/library/stdtypes.html#str] = 'zope.component.getUtility') → mock.MagicMock

	Deprecated, patch certbot.display.util directly or use patch_display_util instead.

	Parameters

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to patch

	Returns

	mock zope.component.getUtility

	Return type

	mock.MagicMock

	
certbot.tests.util.patch_get_utility_with_stdout(target: str [https://docs.python.org/3/library/stdtypes.html#str] = 'zope.component.getUtility', stdout: Optional[IO] = None) → mock.MagicMock

	Deprecated, patch certbot.display.util directly
or use patch_display_util_with_stdout instead.

	Parameters

	
	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to patch

	stdout (object [https://docs.python.org/3/library/functions.html#object]) – object to write standard output to; it is
expected to have a write method

	Returns

	mock zope.component.getUtility

	Return type

	mock.MagicMock

	
certbot.tests.util.patch_display_util() → mock.MagicMock

	Patch certbot.display.util to use a special mock display utility.

The mock display utility works like a regular mock object, except it also
also asserts that methods are called with valid arguments.

The mock created by this patch mocks out Certbot internals so this can be
used like the old patch_get_utility function. That is, the mock object will
be called by the certbot.display.util functions and the mock returned by
that call will be used as the display utility. This was done to simplify
the transition from zope.component and mocking certbot.display.util
functions directly in test code should be preferred over using this
function in the future.

See https://github.com/certbot/certbot/issues/8948

	Returns

	patch on the function used internally by certbot.display.util to
get a display utility instance

	Return type

	mock.MagicMock

	
certbot.tests.util.patch_display_util_with_stdout(stdout: Optional[IO] = None) → mock.MagicMock

	Patch certbot.display.util to use a special mock display utility.

The mock display utility works like a regular mock object, except it also
asserts that methods are called with valid arguments.

The mock created by this patch mocks out Certbot internals so this can be
used like the old patch_get_utility function. That is, the mock object will
be called by the certbot.display.util functions and the mock returned by
that call will be used as the display utility. This was done to simplify
the transition from zope.component and mocking certbot.display.util
functions directly in test code should be preferred over using this
function in the future.

See https://github.com/certbot/certbot/issues/8948

The message argument passed to the display utility methods is passed to
stdout’s write method.

	Parameters

	stdout (object [https://docs.python.org/3/library/functions.html#object]) – object to write standard output to; it is
expected to have a write method

	Returns

	patch on the function used internally by certbot.display.util to
get a display utility instance

	Return type

	mock.MagicMock

	
class certbot.tests.util.FreezableMock(frozen: bool [https://docs.python.org/3/library/functions.html#bool] = False, func: Optional[Callable[[...], Any]] = None, return_value: Any = sentinel.DEFAULT)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Mock object with the ability to freeze attributes.

This class works like a regular mock.MagicMock object, except
attributes and behavior set before the object is frozen cannot
be changed during tests.

If a func argument is provided to the constructor, this function
is called first when an instance of FreezableMock is called,
followed by the usual behavior defined by MagicMock. The return
value of func is ignored.

	
freeze() → None [https://docs.python.org/3/library/constants.html#None]

	Freeze object preventing further changes.

	
class certbot.tests.util.TempDirTestCase(methodName='runTest')

	Bases: unittest.case.TestCase

Base test class which sets up and tears down a temporary directory

	
setUp() → None [https://docs.python.org/3/library/constants.html#None]

	Execute before test

	
tearDown() → None [https://docs.python.org/3/library/constants.html#None]

	Execute after test

	
class certbot.tests.util.ConfigTestCase(methodName='runTest')

	Bases: certbot.tests.util.TempDirTestCase

Test class which sets up a NamespaceConfig object.

	
setUp() → None [https://docs.python.org/3/library/constants.html#None]

	Execute before test

	
certbot.tests.util.lock_and_call(callback: Callable[[], Any], path_to_lock: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Grab a lock on path_to_lock from a foreign process then execute the callback.
:param callable callback: object to call after acquiring the lock
:param str path_to_lock: path to file or directory to lock

	
certbot.tests.util.skip_on_windows(reason: str [https://docs.python.org/3/library/stdtypes.html#str]) → Callable[[Callable[[...], Any]], Callable[[...], Any]]

	Decorator to skip permanently a test on Windows. A reason is required.

	
certbot.tests.util.temp_join(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the given path joined to the tempdir path for the current platform
Eg.: ‘cert’ => /tmp/cert (Linux) or ‘C:UserscurrentuserAppDataTempcert’ (Windows)

certbot.achallenges module

Client annotated ACME challenges.

Please use names such as achall to distinguish from variables “of type”
acme.challenges.Challenge [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.Challenge] (denoted by chall)
and ChallengeBody (denoted by challb):

from acme import challenges
from acme import messages
from certbot import achallenges

chall = challenges.DNS(token='foo')
challb = messages.ChallengeBody(chall=chall)
achall = achallenges.DNS(chall=challb, domain='example.com')

Note, that all annotated challenges act as a proxy objects:

achall.token == challb.token

	
class certbot.achallenges.AnnotatedChallenge(**kwargs: Any)

	Bases: josepy.util.ImmutableMap

Client annotated challenge.

Wraps around server provided challenge and annotates with data
useful for the client.

	Variables

	challb – Wrapped ChallengeBody.

	
challb

	

	
class certbot.achallenges.KeyAuthorizationAnnotatedChallenge(**kwargs: Any)

	Bases: certbot.achallenges.AnnotatedChallenge

Client annotated KeyAuthorizationChallenge challenge.

	
response_and_validation(*args: Any, **kwargs: Any) → Any

	Generate response and validation.

	
challb

	

	
domain

	

	
account_key

	

	
class certbot.achallenges.DNS(**kwargs: Any)

	Bases: certbot.achallenges.AnnotatedChallenge

Client annotated “dns” ACME challenge.

	
acme_type

	alias of acme.challenges.DNS [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.DNS]

	
challb

	

	
domain

	

certbot.crypto_util module

Certbot client crypto utility functions.

	
certbot.crypto_util.generate_key(key_size: int [https://docs.python.org/3/library/functions.html#int], key_dir: str [https://docs.python.org/3/library/stdtypes.html#str], key_type: str [https://docs.python.org/3/library/stdtypes.html#str] = 'rsa', elliptic_curve: str [https://docs.python.org/3/library/stdtypes.html#str] = 'secp256r1', keyname: str [https://docs.python.org/3/library/stdtypes.html#str] = 'key-certbot.pem', strict_permissions: bool [https://docs.python.org/3/library/functions.html#bool] = True) → certbot.util.Key

	Initializes and saves a privkey.

Inits key and saves it in PEM format on the filesystem.

Note

keyname is the attempted filename, it may be different if a file
already exists at the path.

	Parameters

	
	key_size (int [https://docs.python.org/3/library/functions.html#int]) – key size in bits if key size is rsa.

	key_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key save directory.

	key_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key Type [rsa, ecdsa]

	elliptic_curve (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the elliptic curve if key type is ecdsa.

	keyname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of key

	strict_permissions (bool [https://docs.python.org/3/library/functions.html#bool]) – If true and key_dir exists, an exception is raised if
the directory doesn’t have 0700 permissions or isn’t owned by the current user.

	Returns

	Key

	Return type

	certbot.util.Key

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If unable to generate the key given key_size.

	
certbot.crypto_util.init_save_key(key_size: int [https://docs.python.org/3/library/functions.html#int], key_dir: str [https://docs.python.org/3/library/stdtypes.html#str], key_type: str [https://docs.python.org/3/library/stdtypes.html#str] = 'rsa', elliptic_curve: str [https://docs.python.org/3/library/stdtypes.html#str] = 'secp256r1', keyname: str [https://docs.python.org/3/library/stdtypes.html#str] = 'key-certbot.pem') → certbot.util.Key

	Initializes and saves a privkey.

Inits key and saves it in PEM format on the filesystem.

Note

keyname is the attempted filename, it may be different if a file
already exists at the path.

Deprecated since version 1.16.0: Use generate_key() instead.

	Parameters

	
	key_size (int [https://docs.python.org/3/library/functions.html#int]) – key size in bits if key size is rsa.

	key_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key save directory.

	key_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key Type [rsa, ecdsa]

	elliptic_curve (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the elliptic curve if key type is ecdsa.

	keyname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of key

	Returns

	Key

	Return type

	certbot.util.Key

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If unable to generate the key given key_size.

	
certbot.crypto_util.generate_csr(privkey: certbot.util.Key, names: Union[List[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]], path: str [https://docs.python.org/3/library/stdtypes.html#str], must_staple: bool [https://docs.python.org/3/library/functions.html#bool] = False, strict_permissions: bool [https://docs.python.org/3/library/functions.html#bool] = True) → certbot.util.CSR

	Initialize a CSR with the given private key.

	Parameters

	
	privkey (certbot.util.Key) – Key to include in the CSR

	names (set [https://docs.python.org/3/library/stdtypes.html#set]) – str [https://docs.python.org/3/library/stdtypes.html#str] names to include in the CSR

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Certificate save directory.

	must_staple (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, include the TLS Feature extension “OCSP Must-Staple”

	strict_permissions (bool [https://docs.python.org/3/library/functions.html#bool]) – If true and path exists, an exception is raised if
the directory doesn’t have 0755 permissions or isn’t owned by the current user.

	Returns

	CSR

	Return type

	certbot.util.CSR

	
certbot.crypto_util.init_save_csr(privkey: certbot.util.Key, names: Set[str [https://docs.python.org/3/library/stdtypes.html#str]], path: str [https://docs.python.org/3/library/stdtypes.html#str]) → certbot.util.CSR

	Initialize a CSR with the given private key.

Deprecated since version 1.16.0: Use generate_csr() instead.

	Parameters

	
	privkey (certbot.util.Key) – Key to include in the CSR

	names (set [https://docs.python.org/3/library/stdtypes.html#set]) – str [https://docs.python.org/3/library/stdtypes.html#str] names to include in the CSR

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Certificate save directory.

	Returns

	CSR

	Return type

	certbot.util.CSR

	
certbot.crypto_util.valid_csr(csr: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Validate CSR.

Check if csr is a valid CSR for the given domains.

	Parameters

	csr (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – CSR in PEM.

	Returns

	Validity of CSR.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
certbot.crypto_util.csr_matches_pubkey(csr: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], privkey: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Does private key correspond to the subject public key in the CSR?

	Parameters

	
	csr (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – CSR in PEM.

	privkey (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Private key file contents (PEM)

	Returns

	Correspondence of private key to CSR subject public key.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
certbot.crypto_util.import_csr_file(csrfile: str [https://docs.python.org/3/library/stdtypes.html#str], data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → Tuple[int [https://docs.python.org/3/library/functions.html#int], certbot.util.CSR, List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Import a CSR file, which can be either PEM or DER.

	Parameters

	
	csrfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – CSR filename

	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – contents of the CSR file

	Returns

	(crypto.FILETYPE_PEM,
util.CSR object representing the CSR,
list of domains requested in the CSR)

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
certbot.crypto_util.make_key(bits: int [https://docs.python.org/3/library/functions.html#int] = 1024, key_type: str [https://docs.python.org/3/library/stdtypes.html#str] = 'rsa', elliptic_curve: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Generate PEM encoded RSA|EC key.

	Parameters

	
	bits (int [https://docs.python.org/3/library/functions.html#int]) – Number of bits if key_type=rsa. At least 1024 for RSA.

	key_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of key to generate, but be rsa or ecdsa

	elliptic_curve (str [https://docs.python.org/3/library/stdtypes.html#str]) – The elliptic curve to use.

	Returns

	new RSA or ECDSA key in PEM form with specified number of bits
or of type ec_curve when key_type ecdsa is used.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.crypto_util.valid_privkey(privkey: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Is valid RSA private key?

	Parameters

	privkey (str [https://docs.python.org/3/library/stdtypes.html#str]) – Private key file contents in PEM

	Returns

	Validity of private key.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
certbot.crypto_util.verify_renewable_cert(renewable_cert: certbot.interfaces.RenewableCert) → None [https://docs.python.org/3/library/constants.html#None]

	For checking that your certs were not corrupted on disk.

	Several things are checked:
	
	Signature verification for the cert.

	That fullchain matches cert and chain when concatenated.

	Check that the private key matches the certificate.

	Parameters

	renewable_cert (certbot.interfaces.RenewableCert) – cert to verify

	Raises

	errors.Error – If verification fails.

	
certbot.crypto_util.verify_renewable_cert_sig(renewable_cert: certbot.interfaces.RenewableCert) → None [https://docs.python.org/3/library/constants.html#None]

	Verifies the signature of a RenewableCert object.

	Parameters

	renewable_cert (certbot.interfaces.RenewableCert) – cert to verify

	Raises

	errors.Error – If signature verification fails.

	
certbot.crypto_util.verify_signed_payload(public_key: Union[cryptography.hazmat.primitives.asymmetric.dsa.DSAPublicKey, Ed25519PublicKey, Ed448PublicKey, cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePublicKey, cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey], signature: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], payload: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], signature_hash_algorithm: cryptography.hazmat.primitives.hashes.HashAlgorithm) → None [https://docs.python.org/3/library/constants.html#None]

	Check the signature of a payload.

	Parameters

	
	public_key (RSAPublicKey/EllipticCurvePublicKey) – the public_key to check signature

	signature (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – the signature bytes

	payload (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – the payload bytes

	signature_hash_algorithm (hashes.HashAlgorithm) – algorithm used to hash the payload

	Raises

	
	InvalidSignature – If signature verification fails.

	errors.Error – If public key type is not supported

	
certbot.crypto_util.verify_cert_matches_priv_key(cert_path: str [https://docs.python.org/3/library/stdtypes.html#str], key_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Verifies that the private key and cert match.

	Parameters

	
	cert_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to a cert in PEM format

	key_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to a private key file

	Raises

	errors.Error – If they don’t match.

	
certbot.crypto_util.verify_fullchain(renewable_cert: certbot.interfaces.RenewableCert) → None [https://docs.python.org/3/library/constants.html#None]

	Verifies that fullchain is indeed cert concatenated with chain.

	Parameters

	renewable_cert (certbot.interfaces.RenewableCert) – cert to verify

	Raises

	errors.Error – If cert and chain do not combine to fullchain.

	
certbot.crypto_util.pyopenssl_load_certificate(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → Tuple[OpenSSL.crypto.X509, int [https://docs.python.org/3/library/functions.html#int]]

	Load PEM/DER certificate.

	Raises

	errors.Error –

	
certbot.crypto_util.get_sans_from_cert(cert: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], typ: int [https://docs.python.org/3/library/functions.html#int] = 1) → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of Subject Alternative Names from a certificate.

	Parameters

	
	cert (str [https://docs.python.org/3/library/stdtypes.html#str]) – Certificate (encoded).

	typ – crypto.FILETYPE_PEM or crypto.FILETYPE_ASN1

	Returns

	A list of Subject Alternative Names.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
certbot.crypto_util.get_names_from_cert(cert: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], typ: int [https://docs.python.org/3/library/functions.html#int] = 1) → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of domains from a cert, including the CN if it is set.

	Parameters

	
	cert (str [https://docs.python.org/3/library/stdtypes.html#str]) – Certificate (encoded).

	typ – crypto.FILETYPE_PEM or crypto.FILETYPE_ASN1

	Returns

	A list of domain names.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
certbot.crypto_util.get_names_from_req(csr: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], typ: int [https://docs.python.org/3/library/functions.html#int] = 1) → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of domains from a CSR, including the CN if it is set.

	Parameters

	
	csr (str [https://docs.python.org/3/library/stdtypes.html#str]) – CSR (encoded).

	typ – crypto.FILETYPE_PEM or crypto.FILETYPE_ASN1

	Returns

	A list of domain names.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
certbot.crypto_util.dump_pyopenssl_chain(chain: Union[List[OpenSSL.crypto.X509], List[josepy.util.ComparableX509]], filetype: int [https://docs.python.org/3/library/functions.html#int] = 1) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Dump certificate chain into a bundle.

	Parameters

	chain (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of crypto.X509 (or wrapped in
josepy.util.ComparableX509).

	
certbot.crypto_util.notBefore(cert_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	When does the cert at cert_path start being valid?

	Parameters

	cert_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to a cert in PEM format

	Returns

	the notBefore value from the cert at cert_path

	Return type

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
certbot.crypto_util.notAfter(cert_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	When does the cert at cert_path stop being valid?

	Parameters

	cert_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to a cert in PEM format

	Returns

	the notAfter value from the cert at cert_path

	Return type

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
certbot.crypto_util.sha256sum(filename: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Compute a sha256sum of a file.

NB: In given file, platform specific newlines characters will be converted
into their equivalent unicode counterparts before calculating the hash.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the file whose hash will be computed

	Returns

	sha256 digest of the file in hexadecimal

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.crypto_util.cert_and_chain_from_fullchain(fullchain_pem: str [https://docs.python.org/3/library/stdtypes.html#str]) → Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Split fullchain_pem into cert_pem and chain_pem

	Parameters

	fullchain_pem (str [https://docs.python.org/3/library/stdtypes.html#str]) – concatenated cert + chain

	Returns

	tuple of string cert_pem and chain_pem

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Raises

	errors.Error – If there are less than 2 certificates in the chain.

	
certbot.crypto_util.get_serial_from_cert(cert_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → int [https://docs.python.org/3/library/functions.html#int]

	Retrieve the serial number of a certificate from certificate path

	Parameters

	cert_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to a cert in PEM format

	Returns

	serial number of the certificate

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
certbot.crypto_util.find_chain_with_issuer(fullchains: List[str [https://docs.python.org/3/library/stdtypes.html#str]], issuer_cn: str [https://docs.python.org/3/library/stdtypes.html#str], warn_on_no_match: bool [https://docs.python.org/3/library/functions.html#bool] = False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Chooses the first certificate chain from fullchains whose topmost
intermediate has an Issuer Common Name matching issuer_cn (in other words
the first chain which chains to a root whose name matches issuer_cn).

	Parameters

	
	fullchains (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – The list of fullchains in PEM chain format.

	issuer_cn (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exact Subject Common Name to match against any
issuer in the certificate chain.

	Returns

	The best-matching fullchain, PEM-encoded, or the first if none match.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

certbot.errors module

Certbot client errors.

	
exception certbot.errors.Error

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Generic Certbot client error.

	
exception certbot.errors.AccountStorageError

	Bases: certbot.errors.Error

Generic AccountStorage error.

	
exception certbot.errors.AccountNotFound

	Bases: certbot.errors.AccountStorageError

Account not found error.

	
exception certbot.errors.ReverterError

	Bases: certbot.errors.Error

Certbot Reverter error.

	
exception certbot.errors.SubprocessError

	Bases: certbot.errors.Error

Subprocess handling error.

	
exception certbot.errors.CertStorageError

	Bases: certbot.errors.Error

Generic CertStorage error.

	
exception certbot.errors.HookCommandNotFound

	Bases: certbot.errors.Error

Failed to find a hook command in the PATH.

	
exception certbot.errors.SignalExit

	Bases: certbot.errors.Error

A Unix signal was received while in the ErrorHandler context manager.

	
exception certbot.errors.OverlappingMatchFound

	Bases: certbot.errors.Error

Multiple lineages matched what should have been a unique result.

	
exception certbot.errors.LockError

	Bases: certbot.errors.Error

File locking error.

	
exception certbot.errors.AuthorizationError

	Bases: certbot.errors.Error

Authorization error.

	
exception certbot.errors.FailedChallenges(failed_achalls: Set[AnnotatedChallenge])

	Bases: certbot.errors.AuthorizationError

Failed challenges error.

	Variables

	failed_achalls (set [https://docs.python.org/3/library/stdtypes.html#set]) – Failed AnnotatedChallenge instances.

	
exception certbot.errors.PluginError

	Bases: certbot.errors.Error

Certbot Plugin error.

	
exception certbot.errors.PluginEnhancementAlreadyPresent

	Bases: certbot.errors.Error

Enhancement was already set

	
exception certbot.errors.PluginSelectionError

	Bases: certbot.errors.Error

A problem with plugin/configurator selection or setup

	
exception certbot.errors.NoInstallationError

	Bases: certbot.errors.PluginError

Certbot No Installation error.

	
exception certbot.errors.MisconfigurationError

	Bases: certbot.errors.PluginError

Certbot Misconfiguration error.

	
exception certbot.errors.NotSupportedError

	Bases: certbot.errors.PluginError

Certbot Plugin function not supported error.

	
exception certbot.errors.PluginStorageError

	Bases: certbot.errors.PluginError

Certbot Plugin Storage error.

	
exception certbot.errors.StandaloneBindError(socket_error: OSError [https://docs.python.org/3/library/exceptions.html#OSError], port: int [https://docs.python.org/3/library/functions.html#int])

	Bases: certbot.errors.Error

Standalone plugin bind error.

	
exception certbot.errors.ConfigurationError

	Bases: certbot.errors.Error

Configuration sanity error.

	
exception certbot.errors.MissingCommandlineFlag

	Bases: certbot.errors.Error

A command line argument was missing in noninteractive usage

certbot.interfaces module

Internal class delegating to a module, and displaying warnings when
attributes related to Zope interfaces are accessed.

	
class certbot.interfaces.AccountStorage

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Accounts storage interface.

	
abstract find_all() → List[Account]

	Find all accounts.

	Returns

	All found accounts.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
abstract load(account_id: str [https://docs.python.org/3/library/stdtypes.html#str]) → Account

	Load an account by its id.

	Raises

	
	AccountNotFound – if account could not be found

	AccountStorageError – if account could not be loaded

	Returns

	The account loaded

	Return type

	Account

	
abstract save(account: Account, client: acme.client.ClientBase [https://acme-python.readthedocs.io/en/latest/api/client.html#acme.client.ClientBase]) → None [https://docs.python.org/3/library/constants.html#None]

	Save account.

	Raises

	AccountStorageError – if account could not be saved

	
class certbot.interfaces.Plugin(config: Optional[certbot.configuration.NamespaceConfig], name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Certbot plugin.

Objects providing this interface will be called without satisfying
any entry point “extras” (extra dependencies) you might have defined
for your plugin, e.g (excerpt from setup.py script):

setup(
 ...
 entry_points={
 'certbot.plugins': [
 'name=example_project.plugin[plugin_deps]',
],
 },
 extras_require={
 'plugin_deps': ['dep1', 'dep2'],
 }
)

Therefore, make sure such objects are importable and usable without
extras. This is necessary, because CLI does the following operations
(in order):

	loads an entry point,

	calls inject_parser_options,

	requires an entry point,

	creates plugin instance (__call__).

	
description: str [https://docs.python.org/3/library/stdtypes.html#str] = NotImplemented

	Short plugin description

	
name: str [https://docs.python.org/3/library/stdtypes.html#str] = NotImplemented

	Unique name of the plugin

	
abstract prepare() → None [https://docs.python.org/3/library/constants.html#None]

	Prepare the plugin.

Finish up any additional initialization.

	Raises

	
	PluginError – when full initialization cannot be completed.

	MisconfigurationError – when full initialization cannot be completed. Plugin will
be displayed on a list of available plugins.

	NoInstallationError – when the necessary programs/files cannot be located. Plugin
will NOT be displayed on a list of available plugins.

	NotSupportedError – when the installation is recognized, but the version is not
currently supported.

	
abstract more_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable string to help the user.

Should describe the steps taken and any relevant info to help the user
decide which plugin to use.

	Rtype str

	

	
abstract classmethod inject_parser_options(parser: argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Inject argument parser options (flags).

1. Be nice and prepend all options and destinations with
option_namespace and dest_namespace.

2. Inject options (flags) only. Positional arguments are not
allowed, as this would break the CLI.

	Parameters

	
	parser (ArgumentParser) – (Almost) top-level CLI parser.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unique plugin name.

	
class certbot.interfaces.Authenticator(config: Optional[certbot.configuration.NamespaceConfig], name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: certbot.interfaces.Plugin

Generic Certbot Authenticator.

Class represents all possible tools processes that have the
ability to perform challenges and attain a certificate.

	
abstract get_chall_pref(domain: str [https://docs.python.org/3/library/stdtypes.html#str]) → Iterable[Type[acme.challenges.Challenge [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.Challenge]]]

	Return collections.Iterable of challenge preferences.

	Parameters

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – Domain for which challenge preferences are sought.

	Returns

	collections.Iterable of challenge types (subclasses of
acme.challenges.Challenge [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.Challenge]) with the most
preferred challenges first. If a type is not specified, it means the
Authenticator cannot perform the challenge.

	Return type

	collections.Iterable

	
abstract perform(achalls: List[certbot.achallenges.AnnotatedChallenge]) → List[acme.challenges.ChallengeResponse [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.ChallengeResponse]]

	Perform the given challenge.

	Parameters

	achalls (list [https://docs.python.org/3/library/stdtypes.html#list]) – Non-empty (guaranteed) list of
AnnotatedChallenge
instances, such that it contains types found within
get_chall_pref() only.

	Returns

	list of ACME
ChallengeResponse [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.ChallengeResponse] instances corresponding to each provided
Challenge [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.Challenge].

	Return type

	collections.List of
acme.challenges.ChallengeResponse [https://acme-python.readthedocs.io/en/latest/api/challenges.html#acme.challenges.ChallengeResponse],
where responses are required to be returned in
the same order as corresponding input challenges

	Raises

	PluginError – If some or all challenges cannot be performed

	
abstract cleanup(achalls: List[certbot.achallenges.AnnotatedChallenge]) → None [https://docs.python.org/3/library/constants.html#None]

	Revert changes and shutdown after challenges complete.

This method should be able to revert all changes made by
perform, even if perform exited abnormally.

	Parameters

	achalls (list [https://docs.python.org/3/library/stdtypes.html#list]) – Non-empty (guaranteed) list of
AnnotatedChallenge
instances, a subset of those previously passed to perform().

	Raises

	PluginError – if original configuration cannot be restored

	
class certbot.interfaces.Installer(config: Optional[certbot.configuration.NamespaceConfig], name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: certbot.interfaces.Plugin

Generic Certbot Installer Interface.

Represents any server that an X509 certificate can be placed.

It is assumed that save() is the only method that finalizes a
checkpoint. This is important to ensure that checkpoints are
restored in a consistent manner if requested by the user or in case
of an error.

Using certbot.reverter.Reverter to implement checkpoints,
rollback, and recovery can dramatically simplify plugin development.

	
abstract get_all_names() → Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns all names that may be authenticated.

	Return type

	collections.Iterable of str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract deploy_cert(domain: str [https://docs.python.org/3/library/stdtypes.html#str], cert_path: str [https://docs.python.org/3/library/stdtypes.html#str], key_path: str [https://docs.python.org/3/library/stdtypes.html#str], chain_path: str [https://docs.python.org/3/library/stdtypes.html#str], fullchain_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Deploy certificate.

	Parameters

	
	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – domain to deploy certificate file

	cert_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – absolute path to the certificate file

	key_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – absolute path to the private key file

	chain_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – absolute path to the certificate chain file

	fullchain_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – absolute path to the certificate fullchain
file (cert plus chain)

	Raises

	PluginError – when cert cannot be deployed

	
abstract enhance(domain: str [https://docs.python.org/3/library/stdtypes.html#str], enhancement: str [https://docs.python.org/3/library/stdtypes.html#str], options: Optional[Union[List[str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Perform a configuration enhancement.

	Parameters

	
	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – domain for which to provide enhancement

	enhancement (str [https://docs.python.org/3/library/stdtypes.html#str]) – An enhancement as defined in
ENHANCEMENTS

	options – Flexible options parameter for enhancement.
Check documentation of
ENHANCEMENTS
for expected options for each enhancement.

	Raises

	PluginError – If Enhancement is not supported, or if
an error occurs during the enhancement.

	
abstract supported_enhancements() → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns a collections.Iterable of supported enhancements.

	Returns

	supported enhancements which should be a subset of
ENHANCEMENTS

	Return type

	collections.Iterable of str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract save(title: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, temporary: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Saves all changes to the configuration files.

Both title and temporary are needed because a save may be
intended to be permanent, but the save is not ready to be a full
checkpoint.

It is assumed that at most one checkpoint is finalized by this
method. Additionally, if an exception is raised, it is assumed a
new checkpoint was not finalized.

	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – The title of the save. If a title is given, the
configuration will be saved as a new checkpoint and put in a
timestamped directory. title has no effect if temporary is true.

	temporary (bool [https://docs.python.org/3/library/functions.html#bool]) – Indicates whether the changes made will
be quickly reversed in the future (challenges)

	Raises

	PluginError – when save is unsuccessful

	
abstract rollback_checkpoints(rollback: int [https://docs.python.org/3/library/functions.html#int] = 1) → None [https://docs.python.org/3/library/constants.html#None]

	Revert rollback number of configuration checkpoints.

	Raises

	PluginError – when configuration cannot be fully reverted

	
abstract recovery_routine() → None [https://docs.python.org/3/library/constants.html#None]

	Revert configuration to most recent finalized checkpoint.

Remove all changes (temporary and permanent) that have not been
finalized. This is useful to protect against crashes and other
execution interruptions.

	Raises

	errors.PluginError – If unable to recover the configuration

	
abstract config_test() → None [https://docs.python.org/3/library/constants.html#None]

	Make sure the configuration is valid.

	Raises

	MisconfigurationError – when the config is not in a usable state

	
abstract restart() → None [https://docs.python.org/3/library/constants.html#None]

	Restart or refresh the server content.

	Raises

	PluginError – when server cannot be restarted

	
class certbot.interfaces.RenewableCert

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Interface to a certificate lineage.

	
abstract property cert_path: str [https://docs.python.org/3/library/stdtypes.html#str]

	Path to the certificate file.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract property key_path: str [https://docs.python.org/3/library/stdtypes.html#str]

	Path to the private key file.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract property chain_path: str [https://docs.python.org/3/library/stdtypes.html#str]

	Path to the certificate chain file.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract property fullchain_path: str [https://docs.python.org/3/library/stdtypes.html#str]

	Path to the full chain file.

The full chain is the certificate file plus the chain file.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract property lineagename: str [https://docs.python.org/3/library/stdtypes.html#str]

	Name given to the certificate lineage.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract names() → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	What are the subject names of this certificate?

	Returns

	the subject names

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	CertStorageError – if could not find cert file.

	
class certbot.interfaces.GenericUpdater

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Interface for update types not currently specified by Certbot.

This class allows plugins to perform types of updates that Certbot hasn’t
defined (yet).

To make use of this interface, the installer should implement the interface
methods, and interfaces.GenericUpdater.register(InstallerClass) should
be called from the installer code.

The plugins implementing this enhancement are responsible of handling
the saving of configuration checkpoints as well as other calls to
interface methods of interfaces.Installer such as prepare() and restart()

	
abstract generic_updates(lineage: certbot.interfaces.RenewableCert, *args: Any, **kwargs: Any) → None [https://docs.python.org/3/library/constants.html#None]

	Perform any update types defined by the installer.

If an installer is a subclass of the class containing this method, this
function will always be called when “certbot renew” is run. If the
update defined by the installer should be run conditionally, the
installer needs to handle checking the conditions itself.

This method is called once for each lineage.

	Parameters

	lineage (RenewableCert) – Certificate lineage object

	
class certbot.interfaces.RenewDeployer

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Interface for update types run when a lineage is renewed

This class allows plugins to perform types of updates that need to run at
lineage renewal that Certbot hasn’t defined (yet).

To make use of this interface, the installer should implement the interface
methods, and interfaces.RenewDeployer.register(InstallerClass) should
be called from the installer code.

	
abstract renew_deploy(lineage: certbot.interfaces.RenewableCert, *args: Any, **kwargs: Any) → None [https://docs.python.org/3/library/constants.html#None]

	Perform updates defined by installer when a certificate has been renewed

If an installer is a subclass of the class containing this method, this
function will always be called when a certificate has been renewed by
running “certbot renew”. For example if a plugin needs to copy a
certificate over, or change configuration based on the new certificate.

This method is called once for each lineage renewed

	Parameters

	lineage (RenewableCert) – Certificate lineage object

certbot.main module

Certbot main public entry point.

	
certbot.main.main(cli_args: Optional[List[str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → Optional[Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]]

	Run Certbot.

	Parameters

	cli_args (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – command line to Certbot, defaults to sys.argv[1:]

	Returns

	value for sys.exit [https://docs.python.org/3/library/sys.html#sys.exit] about the exit status of Certbot

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]

certbot.ocsp package

Tools for checking certificate revocation.

	
class certbot.ocsp.RevocationChecker(enforce_openssl_binary_usage: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class figures out OCSP checking on this system, and performs it.

	
ocsp_revoked(cert: certbot.interfaces.RenewableCert) → bool [https://docs.python.org/3/library/functions.html#bool]

	Get revoked status for a particular cert version.

	Parameters

	cert (interfaces.RenewableCert) – Certificate object

	Returns

	True if revoked; False if valid or the check failed or cert is expired.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
ocsp_revoked_by_paths(cert_path: str [https://docs.python.org/3/library/stdtypes.html#str], chain_path: str [https://docs.python.org/3/library/stdtypes.html#str], timeout: int [https://docs.python.org/3/library/functions.html#int] = 10) → bool [https://docs.python.org/3/library/functions.html#bool]

	Performs the OCSP revocation check

	Parameters

	
	cert_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Certificate filepath

	chain_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Certificate chain

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Timeout (in seconds) for the OCSP query

	Returns

	True if revoked; False if valid or the check failed or cert is expired.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

certbot.reverter module

Reverter class saves configuration checkpoints and allows for recovery.

	
class certbot.reverter.Reverter(config: certbot.configuration.NamespaceConfig)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Reverter Class - save and revert configuration checkpoints.

This class can be used by the plugins, especially Installers, to
undo changes made to the user’s system. Modifications to files and
commands to do undo actions taken by the plugin should be registered
with this class before the action is taken.

Once a change has been registered with this class, there are three
states the change can be in. First, the change can be a temporary
change. This should be used for changes that will soon be reverted,
such as config changes for the purpose of solving a challenge.
Changes are added to this state through calls to
add_to_temp_checkpoint() and reverted when
revert_temporary_config() or recovery_routine() is
called.

The second state a change can be in is in progress. These changes
are not temporary, however, they also have not been finalized in a
checkpoint. A change must become in progress before it can be
finalized. Changes are added to this state through calls to
add_to_checkpoint() and reverted when
recovery_routine() is called.

The last state a change can be in is finalized in a checkpoint. A
change is put into this state by first becoming an in progress
change and then calling finalize_checkpoint(). Changes
in this state can be reverted through calls to
rollback_checkpoints().

As a final note, creating new files and registering undo commands
are handled specially and use the methods
register_file_creation() and register_undo_command()
respectively. Both of these methods can be used to create either
temporary or in progress changes.

Note

Consider moving everything over to CSV format.

	Parameters

	config (certbot.configuration.NamespaceConfig) – Configuration.

	
revert_temporary_config() → None [https://docs.python.org/3/library/constants.html#None]

	Reload users original configuration files after a temporary save.

This function should reinstall the users original configuration files
for all saves with temporary=True

	Raises

	ReverterError – when unable to revert config

	
rollback_checkpoints(rollback: int [https://docs.python.org/3/library/functions.html#int] = 1) → None [https://docs.python.org/3/library/constants.html#None]

	Revert ‘rollback’ number of configuration checkpoints.

	Parameters

	rollback (int [https://docs.python.org/3/library/functions.html#int]) – Number of checkpoints to reverse. A str num will be
cast to an integer. So “2” is also acceptable.

	Raises

	ReverterError – if there is a problem with the input or if the function is
unable to correctly revert the configuration checkpoints

	
add_to_temp_checkpoint(save_files: Set[str [https://docs.python.org/3/library/stdtypes.html#str]], save_notes: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Add files to temporary checkpoint.

	Parameters

	
	save_files (set [https://docs.python.org/3/library/stdtypes.html#set]) – set of filepaths to save

	save_notes (str [https://docs.python.org/3/library/stdtypes.html#str]) – notes about changes during the save

	
add_to_checkpoint(save_files: Set[str [https://docs.python.org/3/library/stdtypes.html#str]], save_notes: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Add files to a permanent checkpoint.

	Parameters

	
	save_files (set [https://docs.python.org/3/library/stdtypes.html#set]) – set of filepaths to save

	save_notes (str [https://docs.python.org/3/library/stdtypes.html#str]) – notes about changes during the save

	
register_file_creation(temporary: bool [https://docs.python.org/3/library/functions.html#bool], *files: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Register the creation of all files during certbot execution.

Call this method before writing to the file to make sure that the
file will be cleaned up if the program exits unexpectedly.
(Before a save occurs)

	Parameters

	
	temporary (bool [https://docs.python.org/3/library/functions.html#bool]) – If the file creation registry is for
a temp or permanent save.

	*files – file paths (str) to be registered

	Raises

	certbot.errors.ReverterError – If
call does not contain necessary parameters or if the file creation
is unable to be registered.

	
register_undo_command(temporary: bool [https://docs.python.org/3/library/functions.html#bool], command: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None]

	Register a command to be run to undo actions taken.

Warning

This function does not enforce order of operations in terms
of file modification vs. command registration. All undo commands
are run first before all normal files are reverted to their previous
state. If you need to maintain strict order, you may create
checkpoints before and after the the command registration. This
function may be improved in the future based on demand.

	Parameters

	
	temporary (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the command should be saved in the
IN_PROGRESS or TEMPORARY checkpoints.

	command (list of str) – Command to be run.

	
recovery_routine() → None [https://docs.python.org/3/library/constants.html#None]

	Revert configuration to most recent finalized checkpoint.

Remove all changes (temporary and permanent) that have not been
finalized. This is useful to protect against crashes and other
execution interruptions.

	Raises

	errors.ReverterError – If unable to recover the configuration

	
finalize_checkpoint(title: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Finalize the checkpoint.

Timestamps and permanently saves all changes made through the use
of add_to_checkpoint() and register_file_creation()

	Parameters

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title describing checkpoint

	Raises

	certbot.errors.ReverterError – when the
checkpoint is not able to be finalized.

certbot.util module

Utilities for all Certbot.

	
class certbot.util.Key(file, pem)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property file

	Alias for field number 0

	
property pem

	Alias for field number 1

	
class certbot.util.CSR(file, data, form)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property data

	Alias for field number 1

	
property file

	Alias for field number 0

	
property form

	Alias for field number 2

	
certbot.util.env_no_snap_for_external_calls() → Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	When Certbot is run inside a Snap, certain environment variables
are modified. But Certbot sometimes calls out to external programs,
since it uses classic confinement. When we do that, we must modify
the env to remove our modifications so it will use the system’s
libraries, since they may be incompatible with the versions of
libraries included in the Snap. For example, apachectl, Nginx, and
anything run from inside a hook should call this function and pass
the results into the env argument of subprocess.Popen.

	Returns

	A modified copy of os.environ ready to pass to Popen

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
certbot.util.run_script(params: List[str], log: Callable[[str], None] = <bound method Logger.error of <Logger certbot.util (WARNING)>>) → Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Run the script with the given params.

	Parameters

	
	params (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of parameters to pass to subprocess.run

	log (callable) – Logger method to use for errors

	
certbot.util.exe_exists(exe: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Determine whether path/name refers to an executable.

	Parameters

	exe (str [https://docs.python.org/3/library/stdtypes.html#str]) – Executable path or name

	Returns

	If exe is a valid executable

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
certbot.util.lock_dir_until_exit(dir_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Lock the directory at dir_path until program exit.

	Parameters

	dir_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to directory

	Raises

	errors.LockError – if the lock is held by another process

	
certbot.util.set_up_core_dir(directory: str [https://docs.python.org/3/library/stdtypes.html#str], mode: int [https://docs.python.org/3/library/functions.html#int], strict: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	Ensure directory exists with proper permissions and is locked.

	Parameters

	
	directory (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to a directory.

	mode (int [https://docs.python.org/3/library/functions.html#int]) – Directory mode.

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – require directory to be owned by current user

	Raises

	
	errors.LockError – if the directory cannot be locked

	errors.Error – if the directory cannot be made or verified

	
certbot.util.make_or_verify_dir(directory: str [https://docs.python.org/3/library/stdtypes.html#str], mode: int [https://docs.python.org/3/library/functions.html#int] = 493, strict: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Make sure directory exists with proper permissions.

	Parameters

	
	directory (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to a directory.

	mode (int [https://docs.python.org/3/library/functions.html#int]) – Directory mode.

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – require directory to be owned by current user

	Raises

	
	errors.Error – if a directory already exists,
but has wrong permissions or owner

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – if invalid or inaccessible file names and
paths, or other arguments that have the correct type,
but are not accepted by the operating system.

	
certbot.util.safe_open(path: str [https://docs.python.org/3/library/stdtypes.html#str], mode: str [https://docs.python.org/3/library/stdtypes.html#str] = 'w', chmod: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None) → IO

	Safely open a file.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to a file.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Same os mode for open [https://docs.python.org/3/library/functions.html#open].

	chmod (int [https://docs.python.org/3/library/functions.html#int]) – Same as mode for filesystem.open, uses Python defaults
if None.

	
certbot.util.unique_file(path: str [https://docs.python.org/3/library/stdtypes.html#str], chmod: int [https://docs.python.org/3/library/functions.html#int] = 511, mode: str [https://docs.python.org/3/library/stdtypes.html#str] = 'w') → Tuple[IO, str [https://docs.python.org/3/library/stdtypes.html#str]]

	Safely finds a unique file.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path/filename.ext

	chmod (int [https://docs.python.org/3/library/functions.html#int]) – File mode

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Open mode

	Returns

	tuple of file object and file name

	
certbot.util.unique_lineage_name(path: str [https://docs.python.org/3/library/stdtypes.html#str], filename: str [https://docs.python.org/3/library/stdtypes.html#str], chmod: int [https://docs.python.org/3/library/functions.html#int] = 420, mode: str [https://docs.python.org/3/library/stdtypes.html#str] = 'w') → Tuple[IO, str [https://docs.python.org/3/library/stdtypes.html#str]]

	Safely finds a unique file using lineage convention.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – directory path

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – proposed filename

	chmod (int [https://docs.python.org/3/library/functions.html#int]) – file mode

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – open mode

	Returns

	tuple of file object and file name (which may be modified
from the requested one by appending digits to ensure uniqueness)

	Raises

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – if writing files fails for an unanticipated reason,
such as a full disk or a lack of permission to write to
specified location.

	
certbot.util.safely_remove(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Remove a file that may not exist.

	
certbot.util.get_filtered_names(all_names: Set[str [https://docs.python.org/3/library/stdtypes.html#str]]) → Set[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Removes names that aren’t considered valid by Let’s Encrypt.

	Parameters

	all_names (set [https://docs.python.org/3/library/stdtypes.html#set]) – all names found in the configuration

	Returns

	all found names that are considered valid by LE

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
certbot.util.get_os_info() → Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get OS name and version

	Returns

	(os_name, os_version)

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.util.get_os_info_ua() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get OS name and version string for User Agent

	Returns

	os_ua

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.util.get_systemd_os_like() → List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of strings that indicate the distribution likeness to
other distributions.

	Returns

	List of distribution acronyms

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.util.get_var_from_file(varname: str [https://docs.python.org/3/library/stdtypes.html#str], filepath: str [https://docs.python.org/3/library/stdtypes.html#str] = '/etc/os-release') → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get single value from a file formatted like systemd /etc/os-release

	Parameters

	
	varname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of variable to fetch

	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – File path of os-release file

	Returns

	requested value

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.util.get_python_os_info(pretty: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get Operating System type/distribution and major version
using python platform module

	Parameters

	pretty (bool [https://docs.python.org/3/library/functions.html#bool]) – If the returned OS name should be in longer (pretty) form

	Returns

	(os_name, os_version)

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.util.safe_email(email: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Scrub email address before using it.

	
class certbot.util.DeprecatedArgumentAction(option_strings, dest, nargs=None, const=None, default=None, type=None, choices=None, required=False, help=None, metavar=None)

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

Action to log a warning when an argument is used.

	
certbot.util.add_deprecated_argument(add_argument: Callable[[...], None [https://docs.python.org/3/library/constants.html#None]], argument_name: str [https://docs.python.org/3/library/stdtypes.html#str], nargs: Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → None [https://docs.python.org/3/library/constants.html#None]

	Adds a deprecated argument with the name argument_name.

Deprecated arguments are not shown in the help. If they are used on
the command line, a warning is shown stating that the argument is
deprecated and no other action is taken.

	Parameters

	
	add_argument (callable) – Function that adds arguments to an
argument parser/group.

	argument_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of deprecated argument.

	nargs – Value for nargs when adding the argument to argparse.

	
certbot.util.enforce_le_validity(domain: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Checks that Let’s Encrypt will consider domain to be valid.

	Parameters

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – FQDN to check

	Returns

	The domain cast to str [https://docs.python.org/3/library/stdtypes.html#str], with ASCII-only contents

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	ConfigurationError – for invalid domains and cases where Let’s
Encrypt currently will not issue certificates

	
certbot.util.enforce_domain_sanity(domain: Union[str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Method which validates domain value and errors out if
the requirements are not met.

	Parameters

	domain (str [https://docs.python.org/3/library/stdtypes.html#str] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Domain to check

	Raises

	ConfigurationError – for invalid domains and cases where Let’s
Encrypt currently will not issue certificates

	Returns

	The domain cast to str [https://docs.python.org/3/library/stdtypes.html#str], with ASCII-only contents

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
certbot.util.is_ipaddress(address: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Is given address string form of IP(v4 or v6) address?

	Parameters

	address (str [https://docs.python.org/3/library/stdtypes.html#str]) – address to check

	Returns

	True if address is valid IP address, otherwise return False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
certbot.util.is_wildcard_domain(domain: Union[str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	“Is domain a wildcard domain?

	Parameters

	domain (bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or str [https://docs.python.org/3/library/stdtypes.html#str]) – domain to check

	Returns

	True if domain is a wildcard, otherwise, False

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
certbot.util.get_strict_version(normalized: str [https://docs.python.org/3/library/stdtypes.html#str]) → distutils.version.StrictVersion

	Converts a normalized version to a strict version.

	Parameters

	normalized (str [https://docs.python.org/3/library/stdtypes.html#str]) – normalized version string

	Returns

	An equivalent strict version

	Return type

	distutils.version.StrictVersion

	
certbot.util.is_staging(srv: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Determine whether a given ACME server is a known test / staging server.

	Parameters

	srv (str [https://docs.python.org/3/library/stdtypes.html#str]) – the URI for the ACME server

	Returns

	True iff srv is a known test / staging server

	Rtype bool

	

	
certbot.util.atexit_register(func: Callable, *args: Any, **kwargs: Any) → None [https://docs.python.org/3/library/constants.html#None]

	Sets func to be called before the program exits.

Special care is taken to ensure func is only called when the process
that first imports this module exits rather than any child processes.

	Parameters

	func (function) – function to be called in case of an error

	
certbot.util.parse_loose_version(version_string: str [https://docs.python.org/3/library/stdtypes.html#str]) → List[Union[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Parses a version string into its components.

This code and the returned tuple is based on the now deprecated
distutils.version.LooseVersion class from the Python standard library.
Two LooseVersion classes and two lists as returned by this function should
compare in the same way. See
https://github.com/python/cpython/blob/v3.10.0/Lib/distutils/version.py#L205-L347.

	Parameters

	version_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – version string

	Returns

	list of parsed version string components

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 certbot	

 	
 	
 certbot.achallenges	

 	
 	
 certbot.compat	

 	
 	
 certbot.compat.filesystem	

 	
 	
 certbot.compat.misc	

 	
 	
 certbot.compat.os	

 	
 	
 certbot.crypto_util	

 	
 	
 certbot.display	

 	
 	
 certbot.display.ops	

 	
 	
 certbot.display.util	

 	
 	
 certbot.errors	

 	
 	
 certbot.interfaces	

 	
 	
 certbot.main	

 	
 	
 certbot.ocsp	

 	
 	
 certbot.plugins	

 	
 	
 certbot.plugins.common	

 	
 	
 certbot.plugins.dns_common	

 	
 	
 certbot.plugins.dns_common_lexicon	

 	
 	
 certbot.plugins.dns_test_common	

 	
 	
 certbot.plugins.dns_test_common_lexicon	

 	
 	
 certbot.plugins.enhancements	

 	
 	
 certbot.plugins.storage	

 	
 	
 certbot.plugins.util	

 	
 	
 certbot.reverter	

 	
 	
 certbot.tests	

 	
 	
 certbot.tests.acme_util	

 	
 	
 certbot.tests.util	

 	
 	
 certbot.util	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	access() (in module certbot.compat.os)

 	account_key (certbot.achallenges.KeyAuthorizationAnnotatedChallenge attribute)

 	AccountNotFound

 	AccountStorage (class in certbot.interfaces)

 	AccountStorageError

 	achall (certbot.plugins.dns_test_common.BaseAuthenticatorTest attribute)

 	acme_type (certbot.achallenges.DNS attribute)

 	add_chall() (certbot.plugins.common.ChallengePerformer method)

 	add_deprecated_argument() (in module certbot.util)

 	add_parser_arguments() (certbot.plugins.common.Plugin class method)

 	(certbot.plugins.dns_common.DNSAuthenticator class method)

 	(certbot.tests.util.DummyInstaller class method)

 	add_to_checkpoint() (certbot.plugins.common.Installer method)

 	(certbot.reverter.Reverter method)

 	
 	add_to_temp_checkpoint() (certbot.reverter.Reverter method)

 	add_txt_record() (certbot.plugins.dns_common_lexicon.LexiconClient method)

 	Addr (class in certbot.plugins.common)

 	AnnotatedChallenge (class in certbot.achallenges)

 	are_requested() (in module certbot.plugins.enhancements)

 	are_supported() (in module certbot.plugins.enhancements)

 	assert_valid_call() (in module certbot.display.util)

 	atexit_register() (in module certbot.util)

 	auth_hint() (certbot.plugins.common.Plugin method)

 	(certbot.plugins.dns_common.DNSAuthenticator method)

 	Authenticator (class in certbot.interfaces)

 	AuthorizationError

 	AutoHSTSEnhancement (class in certbot.plugins.enhancements)

B

 	
 	base_domain_name_guesses() (in module certbot.plugins.dns_common)

 	BaseAuthenticatorTest (class in certbot.plugins.dns_test_common)

 	
 	BaseLexiconAuthenticatorTest (class in certbot.plugins.dns_test_common_lexicon)

 	BaseLexiconClientTest (class in certbot.plugins.dns_test_common_lexicon)

 	build_lexicon_config() (in module certbot.plugins.dns_common_lexicon)

C

 	
 	CANCEL (in module certbot.display.util)

 	cert_and_chain_from_fullchain() (in module certbot.crypto_util)

 	cert_path (certbot.interfaces.RenewableCert property)

 	
 certbot

 	module

 	
 certbot.achallenges

 	module

 	
 certbot.compat

 	module

 	
 certbot.compat.filesystem

 	module

 	
 certbot.compat.misc

 	module

 	
 certbot.compat.os

 	module

 	
 certbot.crypto_util

 	module

 	
 certbot.display

 	module

 	
 certbot.display.ops

 	module

 	
 certbot.display.util

 	module

 	
 certbot.errors

 	module

 	
 certbot.interfaces

 	module

 	
 certbot.main

 	module

 	
 certbot.ocsp

 	module

 	
 certbot.plugins

 	module

 	
 certbot.plugins.common

 	module

 	
 certbot.plugins.dns_common

 	module

 	
 certbot.plugins.dns_common_lexicon

 	module

 	
 certbot.plugins.dns_test_common

 	module

 	
 certbot.plugins.dns_test_common_lexicon

 	module

 	
 certbot.plugins.enhancements

 	module

 	
 	
 certbot.plugins.storage

 	module

 	
 certbot.plugins.util

 	module

 	
 certbot.reverter

 	module

 	
 certbot.tests

 	module

 	
 certbot.tests.acme_util

 	module

 	
 certbot.tests.util

 	module

 	
 certbot.util

 	module

 	CertStorageError

 	chain_path (certbot.interfaces.RenewableCert property)

 	chall_to_challb() (in module certbot.tests.acme_util)

 	challb (certbot.achallenges.AnnotatedChallenge attribute)

 	(certbot.achallenges.DNS attribute)

 	(certbot.achallenges.KeyAuthorizationAnnotatedChallenge attribute)

 	ChallengePerformer (class in certbot.plugins.common)

 	check_mode() (in module certbot.compat.filesystem)

 	check_owner() (in module certbot.compat.filesystem)

 	check_permissions() (in module certbot.compat.filesystem)

 	checklist() (in module certbot.display.util)

 	chmod() (in module certbot.compat.filesystem)

 	(in module certbot.compat.os)

 	choose_account() (in module certbot.display.ops)

 	choose_names() (in module certbot.display.ops)

 	choose_values() (in module certbot.display.ops)

 	chown() (in module certbot.compat.os)

 	cleanup() (certbot.interfaces.Authenticator method)

 	(certbot.plugins.dns_common.DNSAuthenticator method)

 	compute_private_key_mode() (in module certbot.compat.filesystem)

 	conf() (certbot.plugins.common.Plugin method)

 	(certbot.plugins.dns_common.CredentialsConfiguration method)

 	config_test() (certbot.interfaces.Installer method)

 	(certbot.tests.util.DummyInstaller method)

 	ConfigTestCase (class in certbot.tests.util)

 	ConfigurationError

 	Configurator (class in certbot.plugins.common)

 	copy_ownership_and_apply_mode() (in module certbot.compat.filesystem)

 	copy_ownership_and_mode() (in module certbot.compat.filesystem)

 	CredentialsConfiguration (class in certbot.plugins.dns_common)

 	CSR (class in certbot.util)

 	csr_matches_pubkey() (in module certbot.crypto_util)

D

 	
 	data (certbot.util.CSR property)

 	del_txt_record() (certbot.plugins.dns_common_lexicon.LexiconClient method)

 	deploy_autohsts() (certbot.plugins.enhancements.AutoHSTSEnhancement method)

 	deploy_cert() (certbot.interfaces.Installer method)

 	(certbot.tests.util.DummyInstaller method)

 	DeprecatedArgumentAction (class in certbot.util)

 	description (certbot.interfaces.Plugin attribute)

 	dest() (certbot.plugins.common.Plugin method)

 	dest_namespace (certbot.plugins.common.Plugin property)

 	
 	dest_namespace() (in module certbot.plugins.common)

 	dir_setup() (in module certbot.plugins.common)

 	directory_select() (in module certbot.display.util)

 	DNS (class in certbot.achallenges)

 	DNSAuthenticator (class in certbot.plugins.dns_common)

 	domain (certbot.achallenges.DNS attribute)

 	(certbot.achallenges.KeyAuthorizationAnnotatedChallenge attribute)

 	DOMAIN_NOT_FOUND (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest attribute)

 	DummyInstaller (class in certbot.tests.util)

 	dump_pyopenssl_chain() (in module certbot.crypto_util)

E

 	
 	enable() (in module certbot.plugins.enhancements)

 	enable_autohsts() (certbot.plugins.enhancements.AutoHSTSEnhancement method)

 	enabled_enhancements() (in module certbot.plugins.enhancements)

 	enforce_domain_sanity() (in module certbot.util)

 	enforce_le_validity() (in module certbot.util)

 	enhance() (certbot.interfaces.Installer method)

 	(certbot.tests.util.DummyInstaller method)

 	
 	ENHANCEMENTS (in module certbot.plugins.enhancements)

 	env_no_snap_for_external_calls() (in module certbot.util)

 	Error

 	ESC (in module certbot.display.util)

 	exe_exists() (in module certbot.util)

 	execute_command() (in module certbot.compat.misc)

 	execute_command_status() (in module certbot.compat.misc)

F

 	
 	FailedChallenges

 	fetch() (certbot.plugins.storage.PluginStorage method)

 	file (certbot.util.CSR property)

 	(certbot.util.Key property)

 	finalize_checkpoint() (certbot.plugins.common.Installer method)

 	(certbot.reverter.Reverter method)

 	find_all() (certbot.interfaces.AccountStorage method)

 	
 	find_chain_with_issuer() (in module certbot.crypto_util)

 	form (certbot.util.CSR property)

 	FreezableMock (class in certbot.tests.util)

 	freeze() (certbot.tests.util.FreezableMock method)

 	fromstring() (certbot.plugins.common.Addr class method)

 	fstat() (in module certbot.compat.os)

 	fullchain_path (certbot.interfaces.RenewableCert property)

G

 	
 	gen_authzr() (in module certbot.tests.acme_util)

 	gen_combos() (in module certbot.tests.acme_util)

 	generate_csr() (in module certbot.crypto_util)

 	generate_key() (in module certbot.crypto_util)

 	GENERIC_ERROR (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest attribute)

 	generic_updates() (certbot.interfaces.GenericUpdater method)

 	GenericUpdater (class in certbot.interfaces)

 	get_addr() (certbot.plugins.common.Addr method)

 	get_addr_obj() (certbot.plugins.common.Addr method)

 	get_all_names() (certbot.interfaces.Installer method)

 	(certbot.tests.util.DummyInstaller method)

 	get_chall_pref() (certbot.interfaces.Authenticator method)

 	(certbot.plugins.dns_common.DNSAuthenticator method)

 	get_default_folder() (in module certbot.compat.misc)

 	get_email() (in module certbot.display.ops)

 	
 	get_filtered_names() (in module certbot.util)

 	get_ipv6_exploded() (certbot.plugins.common.Addr method)

 	get_names_from_cert() (in module certbot.crypto_util)

 	get_names_from_req() (in module certbot.crypto_util)

 	get_os_info() (in module certbot.util)

 	get_os_info_ua() (in module certbot.util)

 	get_port() (certbot.plugins.common.Addr method)

 	get_prefixes() (in module certbot.plugins.util)

 	get_python_os_info() (in module certbot.util)

 	get_sans_from_cert() (in module certbot.crypto_util)

 	get_serial_from_cert() (in module certbot.crypto_util)

 	get_strict_version() (in module certbot.util)

 	get_systemd_os_like() (in module certbot.util)

 	get_valid_domains() (in module certbot.display.ops)

 	get_var_from_file() (in module certbot.util)

H

 	
 	has_min_permissions() (in module certbot.compat.filesystem)

 	has_same_ownership() (in module certbot.compat.filesystem)

 	
 	has_world_permissions() (in module certbot.compat.filesystem)

 	HELP (in module certbot.display.util)

 	HookCommandNotFound

I

 	
 	import_csr_file() (in module certbot.crypto_util)

 	init_save_csr() (in module certbot.crypto_util)

 	init_save_key() (in module certbot.crypto_util)

 	inject_parser_options() (certbot.interfaces.Plugin class method)

 	(certbot.plugins.common.Plugin class method)

 	input_text() (in module certbot.display.util)

 	install_ssl_dhparams() (certbot.plugins.common.Installer method)

 	
 	install_version_controlled_file() (in module certbot.plugins.common)

 	Installer (class in certbot.interfaces)

 	(class in certbot.plugins.common)

 	is_executable() (in module certbot.compat.filesystem)

 	is_ipaddress() (in module certbot.util)

 	is_staging() (in module certbot.util)

 	is_wildcard_domain() (in module certbot.util)

K

 	
 	Key (class in certbot.util)

 	
 	key_path (certbot.interfaces.RenewableCert property)

 	KeyAuthorizationAnnotatedChallenge (class in certbot.achallenges)

L

 	
 	LexiconClient (class in certbot.plugins.dns_common_lexicon)

 	lineagename (certbot.interfaces.RenewableCert property)

 	load() (certbot.interfaces.AccountStorage method)

 	load_cert() (in module certbot.tests.util)

 	load_comparable_csr() (in module certbot.tests.util)

 	load_csr() (in module certbot.tests.util)

 	
 	load_pyopenssl_private_key() (in module certbot.tests.util)

 	load_rsa_private_key() (in module certbot.tests.util)

 	load_vector() (in module certbot.tests.util)

 	lock_and_call() (in module certbot.tests.util)

 	lock_dir_until_exit() (in module certbot.util)

 	LockError

 	LOGIN_ERROR (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest attribute)

M

 	
 	main() (in module certbot.main)

 	make_key() (in module certbot.crypto_util)

 	make_lineage() (in module certbot.tests.util)

 	make_or_verify_dir() (in module certbot.util)

 	makedirs() (in module certbot.compat.filesystem)

 	(in module certbot.compat.os)

 	menu() (in module certbot.display.util)

 	MisconfigurationError

 	MissingCommandlineFlag

 	mkdir() (in module certbot.compat.filesystem)

 	(in module certbot.compat.os)

 	
 module

 	certbot

 	certbot.achallenges

 	certbot.compat

 	certbot.compat.filesystem

 	certbot.compat.misc

 	certbot.compat.os

 	certbot.crypto_util

 	certbot.display

 	certbot.display.ops

 	certbot.display.util

 	certbot.errors

 	certbot.interfaces

 	certbot.main

 	certbot.ocsp

 	certbot.plugins

 	certbot.plugins.common

 	certbot.plugins.dns_common

 	certbot.plugins.dns_common_lexicon

 	certbot.plugins.dns_test_common

 	certbot.plugins.dns_test_common_lexicon

 	certbot.plugins.enhancements

 	certbot.plugins.storage

 	certbot.plugins.util

 	certbot.reverter

 	certbot.tests

 	certbot.tests.acme_util

 	certbot.tests.util

 	certbot.util

 	
 	more_info() (certbot.interfaces.Plugin method)

 	(certbot.plugins.dns_common.DNSAuthenticator method)

 	(certbot.tests.util.DummyInstaller method)

N

 	
 	name (certbot.interfaces.Plugin attribute)

 	names() (certbot.interfaces.RenewableCert method)

 	NoInstallationError

 	normalized_tuple() (certbot.plugins.common.Addr method)

 	
 	notAfter() (in module certbot.crypto_util)

 	notBefore() (in module certbot.crypto_util)

 	notification() (in module certbot.display.util)

 	notify() (in module certbot.display.util)

 	NotSupportedError

O

 	
 	ocsp_revoked() (certbot.ocsp.RevocationChecker method)

 	ocsp_revoked_by_paths() (certbot.ocsp.RevocationChecker method)

 	OK (in module certbot.display.util)

 	open() (in module certbot.compat.filesystem)

 	(in module certbot.compat.os)

 	
 	option_name() (certbot.plugins.common.Plugin method)

 	option_namespace (certbot.plugins.common.Plugin property)

 	option_namespace() (in module certbot.plugins.common)

 	OverlappingMatchFound

P

 	
 	parse_loose_version() (in module certbot.util)

 	patch_display_util() (in module certbot.tests.util)

 	patch_display_util_with_stdout() (in module certbot.tests.util)

 	patch_get_utility() (in module certbot.tests.util)

 	patch_get_utility_with_stdout() (in module certbot.tests.util)

 	path_surgery() (in module certbot.plugins.util)

 	pem (certbot.util.Key property)

 	perform() (certbot.interfaces.Authenticator method)

 	(certbot.plugins.common.ChallengePerformer method)

 	(certbot.plugins.dns_common.DNSAuthenticator method)

 	Plugin (class in certbot.interfaces)

 	(class in certbot.plugins.common)

 	
 	PluginEnhancementAlreadyPresent

 	PluginError

 	PluginSelectionError

 	PluginStorage (class in certbot.plugins.storage)

 	PluginStorageError

 	populate_cli() (in module certbot.plugins.enhancements)

 	prepare() (certbot.interfaces.Plugin method)

 	(certbot.plugins.dns_common.DNSAuthenticator method)

 	(certbot.tests.util.DummyInstaller method)

 	prepare_virtual_console() (in module certbot.compat.misc)

 	put() (certbot.plugins.storage.PluginStorage method)

 	pyopenssl_load_certificate() (in module certbot.crypto_util)

R

 	
 	raise_for_non_administrative_windows_rights() (in module certbot.compat.misc)

 	readline_with_timeout() (in module certbot.compat.misc)

 	readlink() (in module certbot.compat.filesystem)

 	realpath() (in module certbot.compat.filesystem)

 	record_content (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest attribute)

 	record_name (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest attribute)

 	record_prefix (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest attribute)

 	recovery_routine() (certbot.interfaces.Installer method)

 	(certbot.plugins.common.Installer method)

 	(certbot.reverter.Reverter method)

 	register_file_creation() (certbot.reverter.Reverter method)

 	register_undo_command() (certbot.reverter.Reverter method)

 	rename() (in module certbot.compat.os)

 	renew_deploy() (certbot.interfaces.RenewDeployer method)

 	RenewableCert (class in certbot.interfaces)

 	RenewDeployer (class in certbot.interfaces)

 	
 	replace() (in module certbot.compat.filesystem)

 	(in module certbot.compat.os)

 	report_executed_command() (in module certbot.display.ops)

 	require() (certbot.plugins.dns_common.CredentialsConfiguration method)

 	response_and_validation() (certbot.achallenges.KeyAuthorizationAnnotatedChallenge method)

 	restart() (certbot.interfaces.Installer method)

 	(certbot.tests.util.DummyInstaller method)

 	revert_temporary_config() (certbot.plugins.common.Installer method)

 	(certbot.reverter.Reverter method)

 	Reverter (class in certbot.reverter)

 	ReverterError

 	RevocationChecker (class in certbot.ocsp)

 	rollback_checkpoints() (certbot.interfaces.Installer method)

 	(certbot.plugins.common.Installer method)

 	(certbot.reverter.Reverter method)

 	run_script() (in module certbot.util)

S

 	
 	safe_email() (in module certbot.util)

 	safe_open() (in module certbot.util)

 	safely_remove() (in module certbot.util)

 	save() (certbot.interfaces.AccountStorage method)

 	(certbot.interfaces.Installer method)

 	(certbot.plugins.storage.PluginStorage method)

 	(certbot.tests.util.DummyInstaller method)

 	set_up_core_dir() (in module certbot.util)

 	setUp() (certbot.tests.util.ConfigTestCase method)

 	(certbot.tests.util.TempDirTestCase method)

 	sha256sum() (in module certbot.crypto_util)

 	
 	SignalExit

 	skip_on_windows() (in module certbot.tests.util)

 	ssl_dhparams (certbot.plugins.common.Installer property)

 	StandaloneBindError

 	stat() (in module certbot.compat.os)

 	SubprocessError

 	success_installation() (in module certbot.display.ops)

 	success_renewal() (in module certbot.display.ops)

 	success_revocation() (in module certbot.display.ops)

 	supported_enhancements() (certbot.interfaces.Installer method)

 	(certbot.tests.util.DummyInstaller method)

T

 	
 	tearDown() (certbot.tests.util.TempDirTestCase method)

 	temp_join() (in module certbot.tests.util)

 	TempDirTestCase (class in certbot.tests.util)

 	test_add_txt_record() (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest method)

 	test_add_txt_record_error_adding_record() (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest method)

 	test_add_txt_record_error_finding_domain() (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest method)

 	test_add_txt_record_fail_to_authenticate() (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest method)

 	test_add_txt_record_fail_to_authenticate_with_unknown_error() (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest method)

 	test_add_txt_record_fail_to_find_domain() (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest method)

 	test_add_txt_record_try_twice_to_find_domain() (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest method)

 	
 	test_cleanup() (certbot.plugins.dns_test_common_lexicon.BaseLexiconAuthenticatorTest method)

 	test_del_txt_record() (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest method)

 	test_del_txt_record_error_deleting_record() (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest method)

 	test_del_txt_record_error_finding_domain() (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest method)

 	test_del_txt_record_fail_to_authenticate() (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest method)

 	test_del_txt_record_fail_to_authenticate_with_unknown_error() (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest method)

 	test_del_txt_record_fail_to_find_domain() (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest method)

 	test_get_chall_pref() (certbot.plugins.dns_test_common.BaseAuthenticatorTest method)

 	test_more_info() (certbot.plugins.dns_test_common.BaseAuthenticatorTest method)

 	test_parser_arguments() (certbot.plugins.dns_test_common.BaseAuthenticatorTest method)

 	test_perform() (certbot.plugins.dns_test_common_lexicon.BaseLexiconAuthenticatorTest method)

U

 	
 	umask() (in module certbot.compat.filesystem)

 	(in module certbot.compat.os)

 	underscores_for_unsupported_characters_in_path() (in module certbot.compat.misc)

 	unique_file() (in module certbot.util)

 	
 	unique_lineage_name() (in module certbot.util)

 	UNKNOWN_LOGIN_ERROR (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest attribute)

 	update_autohsts() (certbot.plugins.enhancements.AutoHSTSEnhancement method)

 	updated_ssl_dhparams_digest (certbot.plugins.common.Installer property)

V

 	
 	valid_csr() (in module certbot.crypto_util)

 	valid_privkey() (in module certbot.crypto_util)

 	validate_file() (in module certbot.plugins.dns_common)

 	validate_file_permissions() (in module certbot.plugins.dns_common)

 	validated_directory() (in module certbot.display.ops)

 	validated_input() (in module certbot.display.ops)

 	
 	vector_path() (in module certbot.tests.util)

 	verify_cert_matches_priv_key() (in module certbot.crypto_util)

 	verify_fullchain() (in module certbot.crypto_util)

 	verify_renewable_cert() (in module certbot.crypto_util)

 	verify_renewable_cert_sig() (in module certbot.crypto_util)

 	verify_signed_payload() (in module certbot.crypto_util)

W

 	
 	write() (in module certbot.plugins.dns_test_common)

Y

 	
 	yesno() (in module certbot.display.util)

Ciphersuites

Table of Contents

	Introduction

	Autoupdates

	Cryptographic choices

	Sources of defaults

	Resources for recommendations

	Feedback

	References

	RFC 7575

	BetterCrypto.org

	RFC 7919

	Mozilla

	Dutch National Cyber Security Centre

	Keylength.com

	NIST

	ENISA

	WeakDH/Logjam

	Particular sites’ opinions or configurations

	Amazon ELB

	U.S. Government 18F

	Duraconf

	Site scanning or rating tools

	Qualys SSL Labs

	Dutch NCSC

	Java compatibility issue

Introduction

Autoupdates

Within certain limits, TLS server software can choose what kind of
cryptography to use when a client connects. These choices can affect
security, compatibility, and performance in complex ways. Most of
these options are independent of a particular certificate. Certbot
tries to provide defaults that we think are most useful to our users.

As described below, Certbot will default to modifying
server software’s cryptographic settings to keep these up-to-date with
what we think are appropriate defaults when new versions of the Certbot
are installed (for example, by an operating system package manager).

When this feature is implemented, this document will be updated
to describe how to disable these automatic changes.

Cryptographic choices

Software that uses cryptography must inevitably make choices about what
kind of cryptography to use and how. These choices entail assumptions
about how well particular cryptographic mechanisms resist attack, and what
trade-offs are available and appropriate. The choices are constrained
by compatibility issues (in order to interoperate with other software,
an implementation must agree to use cryptographic mechanisms that the
other side also supports) and protocol issues (cryptographic mechanisms
must be specified in protocols and there must be a way to agree to use
them in a particular context).

The best choices for a particular application may change over time in
response to new research, new standardization events, changes in computer
hardware, and changes in the prevalence of legacy software. Much important
research on cryptanalysis and cryptographic vulnerabilities is unpublished
because many researchers have been working in the interest of improving
some entities’ communications security while weakening, or failing to
improve, others’ security. But important information that improves our
understanding of the state of the art is published regularly.

When enabling TLS support in a compatible web server (which is a separate
step from obtaining a certificate), Certbot has the ability to
update that web server’s TLS configuration. Again, this is different
from the cryptographic particulars of the certificate itself; the
certificate as of the initial release will be RSA-signed using one of
Let’s Encrypt’s 2048-bit RSA keys, and will describe the subscriber’s
RSA public key (“subject public key”) of at least 2048 bits, which is
used for key establishment.

Note that the subscriber’s RSA public key can be used in a wide variety
of key establishment methods, most of which do not use RSA directly
for key exchange, but only for authenticating the server! For example,
in DHE and ECDHE key exchanges, the subject public key is just used to
sign other parameters for authentication. You do not have to “use RSA”
for other purposes just because you’re using an RSA key for authentication.

The certificate doesn’t specify other cryptographic or ciphersuite
particulars; for example, it doesn’t say whether or not parties should
use a particular symmetric algorithm like 3DES, or what cipher modes
they should use. All of these details are negotiated between client
and server independent of the content of the ciphersuite. The
Let’s Encrypt project hopes to provide useful defaults that reflect
good security choices with respect to the publicly-known state of the
art. However, the Let’s Encrypt certificate authority does not
dictate end-users’ security policy, and any site is welcome to change
its preferences in accordance with its own policy or its administrators’
preferences, and use different cryptographic mechanisms or parameters,
or a different priority order, than the defaults provided by Certbot.

If you don’t use Certbot to configure your server directly, because the
client doesn’t integrate with your server software or because you chose
not to use this integration, then the cryptographic defaults haven’t been
modified, and the cryptography chosen by the server will still be whatever
the default for your software was. For example, if you obtain a
certificate using standalone mode and then manually install it in an IMAP
or LDAP server, your cryptographic settings will not be modified by the
client in any way.

Sources of defaults

Initially, Certbot will configure users’ servers to use the cryptographic
defaults recommended by the Mozilla project. These settings are well-reasoned
recommendations that carefully consider client software compatibility. They
are described at

https://wiki.mozilla.org/Security/Server_Side_TLS

and the version implemented by Certbot will be the
version that was most current as of the release date of each client
version. Mozilla offers three separate sets of cryptographic options,
which trade off security and compatibility differently. These are
referred to as the “Modern”, “Intermediate”, and “Old” configurations
(in order from most secure to least secure, and least-backwards compatible
to most-backwards compatible). The client will follow the Mozilla defaults
for the Intermediate configuration by default, at least with regards to
ciphersuites and TLS versions. Mozilla’s web site describes which client
software will be compatible with each configuration. You can also use
the Qualys SSL Labs site to test your server and see whether it
will be compatible with particular software versions.

The Let’s Encrypt project expects to follow the Mozilla recommendations
in the future as those recommendations are updated. (For example, some
users have proposed prioritizing a new ciphersuite known as 0xcc13
which uses the ChaCha and Poly1305 algorithms, and which is already
implemented by the Chrome browser. Mozilla has delayed recommending
0xcc13 over compatibility and standardization concerns, but is likely
to recommend it in the future once these concerns have been addressed. At
that point, Certbot would likely follow the Mozilla recommendations and favor
the use of this ciphersuite as well.)

The Let’s Encrypt project may deviate from the Mozilla recommendations
in the future if good cause is shown and we believe our users’
priorities would be well-served by doing so. In general, please address
relevant proposals for changing priorities to the Mozilla security
team first, before asking the Certbot developers to change
Certbot’s priorities. The Mozilla security team is likely to have more
resources and expertise to bring to bear on evaluating reasons why its
recommendations should be updated.

The Let’s Encrypt project will entertain proposals to create a very
small number of alternative configurations (apart from Modern,
Intermediate, and Old) that there’s reason to believe would be widely
used by sysadmins; this would usually be a preferable course to modifying
an existing configuration. For example, if many sysadmins want their
servers configured to track a different expert recommendation, Certbot
could add an option to do so.

Resources for recommendations

In the course of considering how to handle this issue, we received
recommendations with sources of expert guidance on ciphersuites and other
cryptographic parameters. We’re grateful to everyone who contributed
suggestions. The recommendations we received are available under Feedback.

Certbot users are welcome to review these authorities to
better inform their own cryptographic parameter choices. We also
welcome suggestions of other resources to add to this list. Please keep
in mind that different recommendations may reflect different priorities
or evaluations of trade-offs, especially related to compatibility!

Feedback

We receive lots of feedback on the type of ciphersuites that Let’s Encrypt supports and list some collated feedback below. This section aims to track suggestions and references that people have offered or identified to improve the ciphersuites that Let’s Encrypt enables when configuring TLS on servers.

Because of the Chatham House Rule applicable to some of the discussions, people are not individually credited for their suggestions, but most suggestions here were made or found by other people, and I thank them for their contributions.

Some people provided rationale information mostly having to do with compatibility of particular user-agents (especially UAs that don’t support ECC, or that don’t support DH groups > 1024 bits). Some ciphersuite configurations have been chosen to try to increase compatibility with older UAs while allowing newer UAs to negotiate stronger crypto. For example, some configurations forego forward secrecy entirely for connections from old UAs, like by offering ECDHE and RSA key exchange, but no DHE at all. (There are UAs that can fail the negotiation completely if a DHE ciphersuite with prime > 1024 bits is offered.)

References

RFC 7575

IETF has published a BCP document, RFC 7525, “Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)”

https://datatracker.ietf.org/doc/rfc7525/

BetterCrypto.org

BetterCrypto.org, a collaboration of mostly European IT security experts, has published a draft paper, “Applied Crypto Hardening”

https://bettercrypto.org/

RFC 7919

IETF has published a document, RFC 7919, “Negotiated Discrete Log Diffie-Hellman Ephemeral Parameters for TLS”.
It advocates using standardized DH groups in all cases, not individually-chosen ones (mostly because of the Triple
Handshake attack which can involve maliciously choosing invalid DH groups). The RFC provides a list of recommended
groups, with primes beginning at 2048 bits and going up from there. It also has a new protocol mechanism for agreeing
to use these groups, with the possibility of backwards compatibility (and use of weaker DH groups) for older clients
and servers that don’t know about this mechanism.

https://datatracker.ietf.org/doc/html/rfc7919

Mozilla

Mozilla’s general server configuration guidance is available at https://wiki.mozilla.org/Security/Server_Side_TLS

Mozilla has also produced a configuration generator: https://ssl-config.mozilla.org

Dutch National Cyber Security Centre

The Dutch National Cyber Security Centre has published guidance on “ICT-beveiligingsrichtlijnen voor Transport Layer Security (TLS)” (“IT Security Guidelines for Transport Layer Security (TLS)”). These are available only in Dutch at

https://web.archive.org/web/20190516085116/https://www.ncsc.nl/actueel/whitepapers/ict-beveiligingsrichtlijnen-voor-transport-layer-security-tls.html

I have access to an English-language summary of the recommendations.

Keylength.com

Damien Giry collects recommendations by academic researchers and standards organizations about keylengths for particular cryptoperiods, years, or security levels. The keylength recommendations of the various sources are summarized in a chart. This site has been updated over time and includes expert guidance from eight sources published between 2000 and 2017.

https://www.keylength.com/

NIST

NIST published its “NIST Special Publication 800-52 Revision 2: Guidelines for the Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations”

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf

and its “NIST Special Publication 800-57: Recommendation for Key Management – Part 1: General (Revision 5)”

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

ENISA

ENISA published its “Algorithms, Key Sizes and Parameters Report - 2013”

https://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-sizes-and-parameters-report

WeakDH/Logjam

The WeakDH/Logjam research has thrown into question the safety of some existing practice using DH ciphersuites, especially the use of standardized groups with a prime ≤ 1024 bits. The authors provided detailed guidance, including ciphersuite lists, at

https://weakdh.org/sysadmin.html

These lists may have been derived from Mozilla’s recommendations.
One of the authors clarified his view of the priorities for various changes as a result of the research at

https://web.archive.org/web/20150526022820/https://www.ietf.org/mail-archive/web/tls/current/msg16496.html

In particular, he supports ECDHE and also supports the use of the standardized groups in the FF-DHE Internet-Draft mentioned above (which isn’t clear from the group’s original recommendations).

Particular sites’ opinions or configurations

Amazon ELB

Amazon ELB explains its current ciphersuite choices at

https://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-security-policy-table.html

U.S. Government 18F

The 18F site (https://18f.gsa.gov/) is using

ssl_ciphers 'kEECDH+ECDSA+AES128 kEECDH+ECDSA+AES256 kEECDH+AES128 kEECDH+AES256 kEDH+AES128 kEDH+AES256 DES-CBC3-SHA +SHA !aNULL !eNULL !LOW !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA !RC4 !SEED';

Duraconf

The Duraconf project collects particular configuration files, with an apparent focus on avoiding the use of obsolete symmetric ciphers and hash functions, and favoring forward secrecy while not requiring it.

https://github.com/ioerror/duraconf

Site scanning or rating tools

Qualys SSL Labs

Qualys offers the best-known TLS security scanner, maintained by Ivan Ristić.

https://www.ssllabs.com/

Dutch NCSC

The Dutch NCSC, mentioned above, has also made available its own site security scanner which indicates how well sites comply with the recommendations.

https://en.internet.nl/

Java compatibility issue

A lot of backward-compatibility concerns have to do with Java hard-coding DHE primes to a 1024-bit limit, accepting DHE ciphersuites in negotiation, and then aborting the connection entirely if a prime > 1024 bits is presented. The simple summary is that servers offering a Java-compatible DHE ciphersuite in preference to other Java-compatible ciphersuites, and then presenting a DH group with a prime > 1024 bits, will be completely incompatible with clients running some versions of Java. (This may also be the case with very old MSIE versions…?) There are various strategies for dealing with this, and maybe we can document the options here.

 usage:
 certbot [SUBCOMMAND] [options] [-d DOMAIN] [-d DOMAIN] ...

Certbot can obtain and install HTTPS/TLS/SSL certificates. By default,
it will attempt to use a webserver both for obtaining and installing the
certificate. The most common SUBCOMMANDS and flags are:

obtain, install, and renew certificates:
 (default) run Obtain & install a certificate in your current webserver
 certonly Obtain or renew a certificate, but do not install it
 renew Renew all previously obtained certificates that are near expiry
 enhance Add security enhancements to your existing configuration
 -d DOMAINS Comma-separated list of domains to obtain a certificate for

 --apache Use the Apache plugin for authentication & installation
 --standalone Run a standalone webserver for authentication
 --nginx Use the Nginx plugin for authentication & installation
 --webroot Place files in a server's webroot folder for authentication
 --manual Obtain certificates interactively, or using shell script hooks

 -n Run non-interactively
 --test-cert Obtain a test certificate from a staging server
 --dry-run Test "renew" or "certonly" without saving any certificates to disk

manage certificates:
 certificates Display information about certificates you have from Certbot
 revoke Revoke a certificate (supply --cert-name or --cert-path)
 delete Delete a certificate (supply --cert-name)

manage your account:
 register Create an ACME account
 unregister Deactivate an ACME account
 update_account Update an ACME account
 show_account Display account details
 --agree-tos Agree to the ACME server's Subscriber Agreement
 -m EMAIL Email address for important account notifications

optional arguments:
 -h, --help show this help message and exit
 -c CONFIG_FILE, --config CONFIG_FILE
 path to config file (default: /etc/letsencrypt/cli.ini
 and ~/.config/letsencrypt/cli.ini)
 -v, --verbose This flag can be used multiple times to incrementally
 increase the verbosity of output, e.g. -vvv. (default:
 0)
 --max-log-backups MAX_LOG_BACKUPS
 Specifies the maximum number of backup logs that
 should be kept by Certbot's built in log rotation.
 Setting this flag to 0 disables log rotation entirely,
 causing Certbot to always append to the same log file.
 (default: 1000)
 -n, --non-interactive, --noninteractive
 Run without ever asking for user input. This may
 require additional command line flags; the client will
 try to explain which ones are required if it finds one
 missing (default: False)
 --force-interactive Force Certbot to be interactive even if it detects
 it's not being run in a terminal. This flag cannot be
 used with the renew subcommand. (default: False)
 -d DOMAIN, --domains DOMAIN, --domain DOMAIN
 Domain names to apply. For multiple domains you can
 use multiple -d flags or enter a comma separated list
 of domains as a parameter. The first domain provided
 will be the subject CN of the certificate, and all
 domains will be Subject Alternative Names on the
 certificate. The first domain will also be used in
 some software user interfaces and as the file paths
 for the certificate and related material unless
 otherwise specified or you already have a certificate
 with the same name. In the case of a name collision it
 will append a number like 0001 to the file path name.
 (default: Ask)
 --eab-kid EAB_KID Key Identifier for External Account Binding (default:
 None)
 --eab-hmac-key EAB_HMAC_KEY
 HMAC key for External Account Binding (default: None)
 --cert-name CERTNAME Certificate name to apply. This name is used by
 Certbot for housekeeping and in file paths; it doesn't
 affect the content of the certificate itself. To see
 certificate names, run 'certbot certificates'. When
 creating a new certificate, specifies the new
 certificate's name. (default: the first provided
 domain or the name of an existing certificate on your
 system for the same domains)
 --dry-run Perform a test run of the client, obtaining test
 (invalid) certificates but not saving them to disk.
 This can currently only be used with the 'certonly'
 and 'renew' subcommands. Note: Although --dry-run
 tries to avoid making any persistent changes on a
 system, it is not completely side-effect free: if used
 with webserver authenticator plugins like apache and
 nginx, it makes and then reverts temporary config
 changes in order to obtain test certificates, and
 reloads webservers to deploy and then roll back those
 changes. It also calls --pre-hook and --post-hook
 commands if they are defined because they may be
 necessary to accurately simulate renewal. --deploy-
 hook commands are not called. (default: False)
 --debug-challenges After setting up challenges, wait for user input
 before submitting to CA. When used in combination with
 the `-v` option, the challenge URLs or FQDNs and their
 expected return values are shown. (default: False)
 --preferred-chain PREFERRED_CHAIN
 Set the preferred certificate chain. If the CA offers
 multiple certificate chains, prefer the chain whose
 topmost certificate was issued from this Subject
 Common Name. If no match, the default offered chain
 will be used. (default: None)
 --preferred-challenges PREF_CHALLS
 A sorted, comma delimited list of the preferred
 challenge to use during authorization with the most
 preferred challenge listed first (Eg, "dns" or
 "http,dns"). Not all plugins support all challenges.
 See https://certbot.eff.org/docs/using.html#plugins
 for details. ACME Challenges are versioned, but if you
 pick "http" rather than "http-01", Certbot will select
 the latest version automatically. (default: [])
 --issuance-timeout ISSUANCE_TIMEOUT
 This option specifies how long (in seconds) Certbot
 will wait for the server to issue a certificate.
 (default: 90)
 --user-agent USER_AGENT
 Set a custom user agent string for the client. User
 agent strings allow the CA to collect high level
 statistics about success rates by OS, plugin and use
 case, and to know when to deprecate support for past
 Python versions and flags. If you wish to hide this
 information from the Let's Encrypt server, set this to
 "". (default: CertbotACMEClient/1.29.0 (certbot;
 OS_NAME OS_VERSION) Authenticator/XXX Installer/YYY
 (SUBCOMMAND; flags: FLAGS) Py/major.minor.patchlevel).
 The flags encoded in the user agent are: --duplicate,
 --force-renew, --allow-subset-of-names, -n, and
 whether any hooks are set.
 --user-agent-comment USER_AGENT_COMMENT
 Add a comment to the default user agent string. May be
 used when repackaging Certbot or calling it from
 another tool to allow additional statistical data to
 be collected. Ignored if --user-agent is set.
 (Example: Foo-Wrapper/1.0) (default: None)

automation:
 Flags for automating execution & other tweaks

 --keep-until-expiring, --keep, --reinstall
 If the requested certificate matches an existing
 certificate, always keep the existing one until it is
 due for renewal (for the 'run' subcommand this means
 reinstall the existing certificate). (default: Ask)
 --expand If an existing certificate is a strict subset of the
 requested names, always expand and replace it with the
 additional names. (default: Ask)
 --version show program's version number and exit
 --force-renewal, --renew-by-default
 If a certificate already exists for the requested
 domains, renew it now, regardless of whether it is
 near expiry. (Often --keep-until-expiring is more
 appropriate). Also implies --expand. (default: False)
 --renew-with-new-domains
 If a certificate already exists for the requested
 certificate name but does not match the requested
 domains, renew it now, regardless of whether it is
 near expiry. (default: False)
 --reuse-key When renewing, use the same private key as the
 existing certificate. (default: False)
 --no-reuse-key When renewing, do not use the same private key as the
 existing certificate. Not reusing private keys is the
 default behavior of Certbot. This option may be used
 to unset --reuse-key on an existing certificate.
 (default: False)
 --new-key When renewing or replacing a certificate, generate a
 new private key, even if --reuse-key is set on the
 existing certificate. Combining --new-key and --reuse-
 key will result in the private key being replaced and
 then reused in future renewals. (default: False)
 --allow-subset-of-names
 When performing domain validation, do not consider it
 a failure if authorizations can not be obtained for a
 strict subset of the requested domains. This may be
 useful for allowing renewals for multiple domains to
 succeed even if some domains no longer point at this
 system. This option cannot be used with --csr.
 (default: False)
 --agree-tos Agree to the ACME Subscriber Agreement (default: Ask)
 --duplicate Allow making a certificate lineage that duplicates an
 existing one (both can be renewed in parallel)
 (default: False)
 -q, --quiet Silence all output except errors. Useful for
 automation via cron. Implies --non-interactive.
 (default: False)

security:
 Security parameters & server settings

 --rsa-key-size N Size of the RSA key. (default: 2048)
 --key-type {rsa,ecdsa}
 Type of generated private key. Only *ONE* per
 invocation can be provided at this time. (default:
 rsa)
 --elliptic-curve N The SECG elliptic curve name to use. Please see RFC
 8446 for supported values. (default: secp256r1)
 --must-staple Adds the OCSP Must-Staple extension to the
 certificate. Autoconfigures OCSP Stapling for
 supported setups (Apache version >= 2.3.3). (default:
 False)
 --redirect Automatically redirect all HTTP traffic to HTTPS for
 the newly authenticated vhost. (default: redirect
 enabled for install and run, disabled for enhance)
 --no-redirect Do not automatically redirect all HTTP traffic to
 HTTPS for the newly authenticated vhost. (default:
 redirect enabled for install and run, disabled for
 enhance)
 --hsts Add the Strict-Transport-Security header to every HTTP
 response. Forcing browser to always use SSL for the
 domain. Defends against SSL Stripping. (default: None)
 --uir Add the "Content-Security-Policy: upgrade-insecure-
 requests" header to every HTTP response. Forcing the
 browser to use https:// for every http:// resource.
 (default: None)
 --staple-ocsp Enables OCSP Stapling. A valid OCSP response is
 stapled to the certificate that the server offers
 during TLS. (default: None)
 --strict-permissions Require that all configuration files are owned by the
 current user; only needed if your config is somewhere
 unsafe like /tmp/ (default: False)
 --auto-hsts Gradually increasing max-age value for HTTP Strict
 Transport Security security header (default: False)

testing:
 The following flags are meant for testing and integration purposes only.

 --test-cert, --staging
 Use the staging server to obtain or revoke test
 (invalid) certificates; equivalent to --server
 https://acme-staging-v02.api.letsencrypt.org/directory
 (default: False)
 --debug Show tracebacks in case of errors (default: False)
 --no-verify-ssl Disable verification of the ACME server's certificate.
 (default: False)
 --http-01-port HTTP01_PORT
 Port used in the http-01 challenge. This only affects
 the port Certbot listens on. A conforming ACME server
 will still attempt to connect on port 80. (default:
 80)
 --http-01-address HTTP01_ADDRESS
 The address the server listens to during http-01
 challenge. (default:)
 --https-port HTTPS_PORT
 Port used to serve HTTPS. This affects which port
 Nginx will listen on after a LE certificate is
 installed. (default: 443)
 --break-my-certs Be willing to replace or renew valid certificates with
 invalid (testing/staging) certificates (default:
 False)

paths:
 Flags for changing execution paths & servers

 --cert-path CERT_PATH
 Path to where certificate is saved (with certonly
 --csr), installed from, or revoked (default: None)
 --key-path KEY_PATH Path to private key for certificate installation or
 revocation (if account key is missing) (default: None)
 --fullchain-path FULLCHAIN_PATH
 Accompanying path to a full certificate chain
 (certificate plus chain). (default: None)
 --chain-path CHAIN_PATH
 Accompanying path to a certificate chain. (default:
 None)
 --config-dir CONFIG_DIR
 Configuration directory. (default: /etc/letsencrypt)
 --work-dir WORK_DIR Working directory. (default: /var/lib/letsencrypt)
 --logs-dir LOGS_DIR Logs directory. (default: /var/log/letsencrypt)
 --server SERVER ACME Directory Resource URI. (default:
 https://acme-v02.api.letsencrypt.org/directory)

manage:
 Various subcommands and flags are available for managing your
 certificates:

 certificates List certificates managed by Certbot
 delete Clean up all files related to a certificate
 renew Renew all certificates (or one specified with --cert-
 name)
 revoke Revoke a certificate specified with --cert-path or
 --cert-name
 update_symlinks Recreate symlinks in your /etc/letsencrypt/live/
 directory

run:
 Options for obtaining & installing certificates

certonly:
 Options for modifying how a certificate is obtained

 --csr CSR Path to a Certificate Signing Request (CSR) in DER or
 PEM format. Currently --csr only works with the
 'certonly' subcommand. (default: None)

renew:
 The 'renew' subcommand will attempt to renew any certificates previously
 obtained if they are close to expiry, and print a summary of the results.
 By default, 'renew' will reuse the plugins and options used to obtain or
 most recently renew each certificate. You can test whether future renewals
 will succeed with `--dry-run`. Individual certificates can be renewed with
 the `--cert-name` option. Hooks are available to run commands before and
 after renewal; see https://certbot.eff.org/docs/using.html#renewal for
 more information on these.

 --pre-hook PRE_HOOK Command to be run in a shell before obtaining any
 certificates. Intended primarily for renewal, where it
 can be used to temporarily shut down a webserver that
 might conflict with the standalone plugin. This will
 only be called if a certificate is actually to be
 obtained/renewed. When renewing several certificates
 that have identical pre-hooks, only the first will be
 executed. (default: None)
 --post-hook POST_HOOK
 Command to be run in a shell after attempting to
 obtain/renew certificates. Can be used to deploy
 renewed certificates, or to restart any servers that
 were stopped by --pre-hook. This is only run if an
 attempt was made to obtain/renew a certificate. If
 multiple renewed certificates have identical post-
 hooks, only one will be run. (default: None)
 --deploy-hook DEPLOY_HOOK
 Command to be run in a shell once for each
 successfully issued certificate. For this command, the
 shell variable $RENEWED_LINEAGE will point to the
 config live subdirectory (for example,
 "/etc/letsencrypt/live/example.com") containing the
 new certificates and keys; the shell variable
 $RENEWED_DOMAINS will contain a space-delimited list
 of renewed certificate domains (for example,
 "example.com www.example.com") (default: None)
 --disable-hook-validation
 Ordinarily the commands specified for --pre-
 hook/--post-hook/--deploy-hook will be checked for
 validity, to see if the programs being run are in the
 $PATH, so that mistakes can be caught early, even when
 the hooks aren't being run just yet. The validation is
 rather simplistic and fails if you use more advanced
 shell constructs, so you can use this switch to
 disable it. (default: False)
 --no-directory-hooks Disable running executables found in Certbot's hook
 directories during renewal. (default: False)
 --disable-renew-updates
 Disable automatic updates to your server configuration
 that would otherwise be done by the selected installer
 plugin, and triggered when the user executes "certbot
 renew", regardless of if the certificate is renewed.
 This setting does not apply to important TLS
 configuration updates. (default: False)
 --no-autorenew Disable auto renewal of certificates. (default: False)

certificates:
 List certificates managed by Certbot

delete:
 Options for deleting a certificate

revoke:
 Options for revocation of certificates

 --reason {unspecified,keycompromise,affiliationchanged,superseded,cessationofoperation}
 Specify reason for revoking certificate. (default:
 unspecified)
 --delete-after-revoke
 Delete certificates after revoking them, along with
 all previous and later versions of those certificates.
 (default: None)
 --no-delete-after-revoke
 Do not delete certificates after revoking them. This
 option should be used with caution because the 'renew'
 subcommand will attempt to renew undeleted revoked
 certificates. (default: None)

register:
 Options for account registration

 --register-unsafely-without-email
 Specifying this flag enables registering an account
 with no email address. This is strongly discouraged,
 because you will be unable to receive notice about
 impending expiration or revocation of your
 certificates or problems with your Certbot
 installation that will lead to failure to renew.
 (default: False)
 -m EMAIL, --email EMAIL
 Email used for registration and recovery contact. Use
 comma to register multiple emails, ex:
 u1@example.com,u2@example.com. (default: Ask).
 --eff-email Share your e-mail address with EFF (default: None)
 --no-eff-email Don't share your e-mail address with EFF (default:
 None)

update_account:
 Options for account modification

unregister:
 Options for account deactivation.

 --account ACCOUNT_ID Account ID to use (default: None)

install:
 Options for modifying how a certificate is deployed

rollback:
 Options for rolling back server configuration changes

 --checkpoints N Revert configuration N number of checkpoints.
 (default: 1)

plugins:
 Options for the "plugins" subcommand

 --init Initialize plugins. (default: False)
 --prepare Initialize and prepare plugins. (default: False)
 --authenticators Limit to authenticator plugins only. (default: None)
 --installers Limit to installer plugins only. (default: None)

update_symlinks:
 Recreates certificate and key symlinks in /etc/letsencrypt/live, if you
 changed them by hand or edited a renewal configuration file

enhance:
 Helps to harden the TLS configuration by adding security enhancements to
 already existing configuration.

show_account:
 Options useful for the "show_account" subcommand:

plugins:
 Plugin Selection: Certbot client supports an extensible plugins
 architecture. See 'certbot plugins' for a list of all installed plugins
 and their names. You can force a particular plugin by setting options
 provided below. Running --help <plugin_name> will list flags specific to
 that plugin.

 --configurator CONFIGURATOR
 Name of the plugin that is both an authenticator and
 an installer. Should not be used together with
 --authenticator or --installer. (default: Ask)
 -a AUTHENTICATOR, --authenticator AUTHENTICATOR
 Authenticator plugin name. (default: None)
 -i INSTALLER, --installer INSTALLER
 Installer plugin name (also used to find domains).
 (default: None)
 --apache Obtain and install certificates using Apache (default:
 False)
 --nginx Obtain and install certificates using Nginx (default:
 False)
 --standalone Obtain certificates using a "standalone" webserver.
 (default: False)
 --manual Provide laborious manual instructions for obtaining a
 certificate (default: False)
 --webroot Obtain certificates by placing files in a webroot
 directory. (default: False)
 --dns-cloudflare Obtain certificates using a DNS TXT record (if you are
 using Cloudflare for DNS). (default: False)
 --dns-cloudxns Obtain certificates using a DNS TXT record (if you are
 using CloudXNS for DNS). (default: False)
 --dns-digitalocean Obtain certificates using a DNS TXT record (if you are
 using DigitalOcean for DNS). (default: False)
 --dns-dnsimple Obtain certificates using a DNS TXT record (if you are
 using DNSimple for DNS). (default: False)
 --dns-dnsmadeeasy Obtain certificates using a DNS TXT record (if you are
 using DNS Made Easy for DNS). (default: False)
 --dns-gehirn Obtain certificates using a DNS TXT record (if you are
 using Gehirn Infrastructure Service for DNS).
 (default: False)
 --dns-google Obtain certificates using a DNS TXT record (if you are
 using Google Cloud DNS). (default: False)
 --dns-linode Obtain certificates using a DNS TXT record (if you are
 using Linode for DNS). (default: False)
 --dns-luadns Obtain certificates using a DNS TXT record (if you are
 using LuaDNS for DNS). (default: False)
 --dns-nsone Obtain certificates using a DNS TXT record (if you are
 using NS1 for DNS). (default: False)
 --dns-ovh Obtain certificates using a DNS TXT record (if you are
 using OVH for DNS). (default: False)
 --dns-rfc2136 Obtain certificates using a DNS TXT record (if you are
 using BIND for DNS). (default: False)
 --dns-route53 Obtain certificates using a DNS TXT record (if you are
 using Route53 for DNS). (default: False)
 --dns-sakuracloud Obtain certificates using a DNS TXT record (if you are
 using Sakura Cloud for DNS). (default: False)

apache:
 Apache Web Server plugin (Please note that the default values of the
 Apache plugin options change depending on the operating system Certbot is
 run on.)

 --apache-enmod APACHE_ENMOD
 Path to the Apache 'a2enmod' binary (default: None)
 --apache-dismod APACHE_DISMOD
 Path to the Apache 'a2dismod' binary (default: None)
 --apache-le-vhost-ext APACHE_LE_VHOST_EXT
 SSL vhost configuration extension (default: -le-
 ssl.conf)
 --apache-server-root APACHE_SERVER_ROOT
 Apache server root directory (default: /etc/apache2)
 --apache-vhost-root APACHE_VHOST_ROOT
 Apache server VirtualHost configuration root (default:
 None)
 --apache-logs-root APACHE_LOGS_ROOT
 Apache server logs directory (default:
 /var/log/apache2)
 --apache-challenge-location APACHE_CHALLENGE_LOCATION
 Directory path for challenge configuration (default:
 /etc/apache2)
 --apache-handle-modules APACHE_HANDLE_MODULES
 Let installer handle enabling required modules for you
 (Only Ubuntu/Debian currently) (default: False)
 --apache-handle-sites APACHE_HANDLE_SITES
 Let installer handle enabling sites for you (Only
 Ubuntu/Debian currently) (default: False)
 --apache-ctl APACHE_CTL
 Full path to Apache control script (default:
 apache2ctl)
 --apache-bin APACHE_BIN
 Full path to apache2/httpd binary (default: None)

dns-cloudflare:
 Obtain certificates using a DNS TXT record (if you are using Cloudflare
 for DNS).

 --dns-cloudflare-propagation-seconds DNS_CLOUDFLARE_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 10)
 --dns-cloudflare-credentials DNS_CLOUDFLARE_CREDENTIALS
 Cloudflare credentials INI file. (default: None)

dns-cloudxns:
 Obtain certificates using a DNS TXT record (if you are using CloudXNS for
 DNS).

 --dns-cloudxns-propagation-seconds DNS_CLOUDXNS_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 30)
 --dns-cloudxns-credentials DNS_CLOUDXNS_CREDENTIALS
 CloudXNS credentials INI file. (default: None)

dns-digitalocean:
 Obtain certificates using a DNS TXT record (if you are using DigitalOcean
 for DNS).

 --dns-digitalocean-propagation-seconds DNS_DIGITALOCEAN_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 10)
 --dns-digitalocean-credentials DNS_DIGITALOCEAN_CREDENTIALS
 DigitalOcean credentials INI file. (default: None)

dns-dnsimple:
 Obtain certificates using a DNS TXT record (if you are using DNSimple for
 DNS).

 --dns-dnsimple-propagation-seconds DNS_DNSIMPLE_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 30)
 --dns-dnsimple-credentials DNS_DNSIMPLE_CREDENTIALS
 DNSimple credentials INI file. (default: None)

dns-dnsmadeeasy:
 Obtain certificates using a DNS TXT record (if you are using DNS Made Easy
 for DNS).

 --dns-dnsmadeeasy-propagation-seconds DNS_DNSMADEEASY_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 60)
 --dns-dnsmadeeasy-credentials DNS_DNSMADEEASY_CREDENTIALS
 DNS Made Easy credentials INI file. (default: None)

dns-gehirn:
 Obtain certificates using a DNS TXT record (if you are using Gehirn
 Infrastructure Service for DNS).

 --dns-gehirn-propagation-seconds DNS_GEHIRN_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 30)
 --dns-gehirn-credentials DNS_GEHIRN_CREDENTIALS
 Gehirn Infrastructure Service credentials file.
 (default: None)

dns-google:
 Obtain certificates using a DNS TXT record (if you are using Google Cloud
 DNS for DNS).

 --dns-google-propagation-seconds DNS_GOOGLE_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 60)
 --dns-google-credentials DNS_GOOGLE_CREDENTIALS
 Path to Google Cloud DNS service account JSON file.
 (See https://developers.google.com/identity/protocols/
 OAuth2ServiceAccount#creatinganaccount forinformation
 about creating a service account and
 https://cloud.google.com/dns/access-
 control#permissions_and_roles for information about
 therequired permissions.) (default: None)

dns-linode:
 Obtain certificates using a DNS TXT record (if you are using Linode for
 DNS).

 --dns-linode-propagation-seconds DNS_LINODE_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 120)
 --dns-linode-credentials DNS_LINODE_CREDENTIALS
 Linode credentials INI file. (default: None)

dns-luadns:
 Obtain certificates using a DNS TXT record (if you are using LuaDNS for
 DNS).

 --dns-luadns-propagation-seconds DNS_LUADNS_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 30)
 --dns-luadns-credentials DNS_LUADNS_CREDENTIALS
 LuaDNS credentials INI file. (default: None)

dns-nsone:
 Obtain certificates using a DNS TXT record (if you are using NS1 for DNS).

 --dns-nsone-propagation-seconds DNS_NSONE_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 30)
 --dns-nsone-credentials DNS_NSONE_CREDENTIALS
 NS1 credentials file. (default: None)

dns-ovh:
 Obtain certificates using a DNS TXT record (if you are using OVH for DNS).

 --dns-ovh-propagation-seconds DNS_OVH_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 120)
 --dns-ovh-credentials DNS_OVH_CREDENTIALS
 OVH credentials INI file. (default: None)

dns-rfc2136:
 Obtain certificates using a DNS TXT record (if you are using BIND for
 DNS).

 --dns-rfc2136-propagation-seconds DNS_RFC2136_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 60)
 --dns-rfc2136-credentials DNS_RFC2136_CREDENTIALS
 RFC 2136 credentials INI file. (default: None)

dns-route53:
 Obtain certificates using a DNS TXT record (if you are using AWS Route53
 for DNS).

 --dns-route53-propagation-seconds DNS_ROUTE53_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 10)

dns-sakuracloud:
 Obtain certificates using a DNS TXT record (if you are using Sakura Cloud
 for DNS).

 --dns-sakuracloud-propagation-seconds DNS_SAKURACLOUD_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate
 before asking the ACME server to verify the DNS
 record. (default: 90)
 --dns-sakuracloud-credentials DNS_SAKURACLOUD_CREDENTIALS
 Sakura Cloud credentials file. (default: None)

manual:
 Authenticate through manual configuration or custom shell scripts. When
 using shell scripts, an authenticator script must be provided. The
 environment variables available to this script depend on the type of
 challenge. $CERTBOT_DOMAIN will always contain the domain being
 authenticated. For HTTP-01 and DNS-01, $CERTBOT_VALIDATION is the
 validation string, and $CERTBOT_TOKEN is the filename of the resource
 requested when performing an HTTP-01 challenge. An additional cleanup
 script can also be provided and can use the additional variable
 $CERTBOT_AUTH_OUTPUT which contains the stdout output from the auth
 script. For both authenticator and cleanup script, on HTTP-01 and DNS-01
 challenges, $CERTBOT_REMAINING_CHALLENGES will be equal to the number of
 challenges that remain after the current one, and $CERTBOT_ALL_DOMAINS
 contains a comma-separated list of all domains that are challenged for the
 current certificate.

 --manual-auth-hook MANUAL_AUTH_HOOK
 Path or command to execute for the authentication
 script (default: None)
 --manual-cleanup-hook MANUAL_CLEANUP_HOOK
 Path or command to execute for the cleanup script
 (default: None)

nginx:
 Nginx Web Server plugin

 --nginx-server-root NGINX_SERVER_ROOT
 Nginx server root directory. (default: /etc/nginx or
 /usr/local/etc/nginx)
 --nginx-ctl NGINX_CTL
 Path to the 'nginx' binary, used for 'configtest' and
 retrieving nginx version number. (default: nginx)
 --nginx-sleep-seconds NGINX_SLEEP_SECONDS
 Number of seconds to wait for nginx configuration
 changes to apply when reloading. (default: 1)

null:
 Null Installer

standalone:
 Spin up a temporary webserver

webroot:
 Place files in webroot directory

 --webroot-path WEBROOT_PATH, -w WEBROOT_PATH
 public_html / webroot path. This can be specified
 multiple times to handle different domains; each
 domain will have the webroot path that preceded it.
 For instance: `-w /var/www/example -d example.com -d
 www.example.com -w /var/www/thing -d thing.net -d
 m.thing.net` (default: Ask)
 --webroot-map WEBROOT_MAP
 JSON dictionary mapping domains to webroot paths; this
 implies -d for each entry. You may need to escape this
 from your shell. E.g.: --webroot-map
 '{"eg1.is,m.eg1.is":"/www/eg1/", "eg2.is":"/www/eg2"}'
 This option is merged with, but takes precedence over,
 -w / -d entries. At present, if you put webroot-map in
 a config file, it needs to be on a single line, like:
 webroot-map = {"example.com":"/var/www"}. (default:
 {})

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to the Certbot documentation!

 		
 Introduction

 		
 Contributing

 		
 How to run the client

 		
 Understanding the client in more depth

 		
 Links

 		
 System Requirements

 		
 What is a Certificate?

 		
 Certificates and Lineages

 		
 Get Certbot

 		
 About Certbot

 		
 System Requirements

 		
 Alternate installation methods

 		
 Snap

 		
 Running with Docker

 		
 Pip

 		
 User Guide

 		
 Certbot Commands

 		
 Getting certificates (and choosing plugins)

 		
 Apache

 		
 Webroot

 		
 Nginx

 		
 Standalone

 		
 DNS Plugins

 		
 Manual

 		
 Combining plugins

 		
 Third-party plugins

 		
 Managing certificates

 		
 Re-creating and Updating Existing Certificates

 		
 Changing a Certificate’s Domains

 		
 Using ECDSA keys

 		
 Revoking certificates

 		
 Deleting certificates

 		
 Renewing certificates

 		
 Modifying the Renewal Configuration of Existing Certificates

 		
 Automated Renewals

 		
 Where are my certificates?

 		
 Pre and Post Validation Hooks

 		
 Changing the ACME Server

 		
 Lock Files

 		
 Configuration file

 		
 Log Rotation

 		
 Certbot command-line options

 		
 Getting help

 		
 Developer Guide

 		
 Getting Started

 		
 Running a local copy of the client

 		
 Find issues to work on

 		
 Testing

 		
 Code components and layout

 		
 Plugin-architecture

 		
 Authenticators

 		
 Installer

 		
 Installer Development

 		
 Writing your own plugin

 		
 Coding style

 		
 Use certbot.compat.os instead of os

 		
 Mypy type annotations

 		
 Submitting a pull request

 		
 Asking for help

 		
 Building the Certbot and DNS plugin snaps

 		
 Updating the documentation

 		
 Certbot’s dependencies

 		
 Updating dependency versions

 		
 Running the client with Docker

 		
 Packaging Guide

 		
 Releases

 		
 Notes for package maintainers

 		
 Backwards Compatibility

 		
 Resources

 		
 API Documentation

 		
 certbot package

 		
 Subpackages

 		
 Submodules

