Plot solutions to a trigonometric equation on the unit circle

For example, when solving the equation $$\sin(13x)+\sin(9x)=\cos(2x)$$ (by hand) you get the solutions $$x= \begin{cases} \pm\tfrac{\pi}{4}+\pi n,\\ \tfrac{\pi}{66}+\tfrac{2}{11}\pi n,\\ \tfrac{5\pi}{66}+\tfrac{2}{11}\pi n, \end{cases} \qquad n\in\mathbb{Z}.$$

I can make a graphic illustration of the solutions with the following (primitive) code;

Clear[x1, x2, x3, x4, n]
x1[n_] := \[Pi]/66 + 2/11 \[Pi] n
x2[n_] := 5 \[Pi]/66 + 2/11 \[Pi] n
x3[n_] := -\[Pi]/4 + \[Pi] n
x4[n_] := \[Pi]/4 + \[Pi] n
p1 = Table[{Cos[x1[n]], Sin[x1[n]]}, {n, 0, 10}];
p2 = Table[{Cos[x2[n]], Sin[x2[n]]}, {n, 0, 10}];
p3 = Table[{Cos[x3[n]], Sin[x3[n]]}, {n, 0, 1}];
p4 = Table[{Cos[x4[n]], Sin[x4[n]]}, {n, 0, 1}];
Graphics[{Circle[{0, 0}, 1], Point[p1], Point[p2], Point[p3], Point[p4]}]

but is there a smarter/more efficient way to make the plot (and perhaps with a little more ‘fancy’ output)? TIA.

Clear["Global`*"]

eqn = Sin[13 x] + Sin[9 x] == Cos[2 x];

FunctionPeriod[#, x] & /@ (List @@ eqn)

(* {2 π, π} *)

x /. (sol = SortBy[Solve[{eqn, 0 <= x <= 2 Pi}, x] // FullSimplify, N])

(* {π/66, (5 π)/66, (13 π)/66, π/4, (17 π)/66, (
25 π)/66, (29 π)/66, (37 π)/66, (41 π)/66, (49 π)/66, (
3 π)/4, (53 π)/66, (61 π)/66, (65 π)/66, (73 π)/66, (
7 π)/6, (5 π)/4, (85 π)/66, (89 π)/66, (97 π)/66, (
101 π)/66, (109 π)/66, (113 π)/66, (7 π)/4, (11 π)/6, (
125 π)/66} *)

Much faster:

x /. (sol2 =
NSolve[{eqn, 0 <= x <= 2 Pi}, x] /.
r_Real :> Pi*RootApproximant[r/Pi])

(* {π/66, (5 π)/66, (13 π)/66, π/4, (17 π)/66, (
25 π)/66, (29 π)/66, (37 π)/66, (41 π)/66, (49 π)/66, (
3 π)/4, (53 π)/66, (61 π)/66, (65 π)/66, (73 π)/66, (
7 π)/6, (5 π)/4, (85 π)/66, (89 π)/66, (97 π)/66, (
101 π)/66, (109 π)/66, (113 π)/66, (7 π)/4, (11 π)/6, (
125 π)/66} *)

% === %%

(* True *)

Plotting,

ParametricPlot[{Cos[x], Sin[x]}, {x, 0, 2 Pi},
PlotStyle -> LightGray,
Epilog -> {Red, AbsolutePointSize,
Tooltip[Point[{Cos[x], Sin[x]}], x] /. sol}] Plot[Evaluate[List @@ eqn], {x, 0, 2 Pi},
Epilog -> {Red, AbsolutePointSize,
Tooltip[Point[{x, Cos[2 x]}], {x, Cos[2 x]}] /. sol},
PlotLegends -> "Expressions"] Plot[Evaluate[Subtract @@ eqn], {x, 0, 2 Pi},
Epilog -> {Red, AbsolutePointSize,
Tooltip[Point[{x, 0}], x] /. sol},
PlotLabel -> Style[Subtract @@ eqn, 14, Black]] Perhaps this?:

SolveValues[Sin[13 x] + Sin[9 x] == Cos[2 x], x] /. C -> 0 //
Exp[I #] & // ComplexListPlot • Very nice! Can I add the unit circle too? I tried a Circle command but it did not work as expected.
– mf67
Nov 29 '21 at 1:42
• @mf67 Show[<plot>, Graphics[{Circle[]}]] is one way. Also ComplexListPlot[SolveValues[...] /. C -> 0 // Exp[I #] &, Prolog -> {Circle[]}] Nov 29 '21 at 1:43
• @mf67 ListPolarPlot[ [email protected][Sin[13 x] + Sin[9 x] == Cos[2 x], x] /. C -> 0 // PadRight[#, {Automatic, 2}, 1] &, Prolog -> {Circle[]}] is another way. Nov 29 '21 at 1:46
• Michael E2, OK! I thought Circle[{0,0},1] would work, but it didn't. It seems the argument should be empty. (I don't understand why though.)
– mf67
Nov 29 '21 at 1:47
• @mf67 Circle[{0, 0}, 1] works, too, in both my example codes. It must be how you added it to the code. Nov 29 '21 at 1:50

Edit

ParametricPlot[{Cos[x], Sin[x]}, {x, 0, 2 π}, Mesh -> {{0}},
MeshFunctions -> {Sin[13 #3] + Sin[9 #3] - Cos[2 #3] &},
MeshStyle -> {PointSize[Medium], Red}] Original

sol = NSolve[Sin[13 x] + Sin[9 x] == Cos[2 x] && 0 <= x <= 2 π, x,
Reals]
Graphics[{Circle[], {PointSize[Medium], Red,
Point[AngleVector /@ (x /. sol)]}}] 