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Chapter 1. Introduction
This chapter is Informative except for the section on Terminology.

This document, referred to as the ÒNNEF SpecificationÓ or just the ÒSpecificationÓ hereafter,
describes the Neural Network Exchange Format: what it is, what it is intended to be used for, and
what is required to produce or consume it. We assume that the reader has at least a rudimentary
understanding of neural networks and deep learning. This means familiarity with the essentials of
neural network operations and terminology.

1.1. What is NNEF
NNEF is a data format for exchanging information about (trained) neural networks. Exchanging
such information in a standardized format has become inevitable with the spreading of deep
learning, as neural networks found their way from academic research to real-world industrial
applications. With the proliferation of open-source deep learning frameworks and hardware
support emerging for the acceleration of neural networks, the field faces the problem of
fragmentation, as different accelerators are compatible with different frameworks. The goal of
NNEF is to provide a standard platform for connecting accelerated neural network execution
engines and available deep learning tools. Ideally, neural networks trained in deep learning
frameworks would be exported to NNEF, and neural network accelerator libraries could consume it
without worrying about compatibility with all deep learning frameworks.

NNEF aims to encapsulate two key aspects of neural networks: network structure  and network data .
To describe network structure in a flexible way, NNEF introduces a simple syntax similar to existing
scripting languages, along with a set of standardized operations to express common neural network
architectures. The syntax is designed to be both human readable and editable, and also easy to
parse by consumer libraries. The network data, which form parameters of the structure, is stored in
a simple format that supports flexible production and consumption of networks. NNEF can be
thought of as a simple language with which a neural network accelerator can be programmed,
while being independent of many details of the training and inference process, such as how the
network is fed with data, or the data representations and algorithms of the underlying hardware.

Although the main focus of NNEF is to be a central chain in the pipeline from deep learning
frameworks to neural network accelerator libraries, we envision that the format may be used by
intermediate tools in the future, for transforming neural networks in ways that are independent
both from the training and the execution process. Therefore, producers and consumers of NNEF
may be various, however, two important sub-categories are exporters and importers, explained
below.

1.1.1. The ExporterÕs view of NNEF

For an exporter of NNEF, such as a deep learning framework, NNEF is a format to which its internal
network representation can be converted, and afterwards all accelerator libraries that are able to
consume NNEF will be able to execute the trained network (if the network matches its capabilities).
The task of an exporter is to map its operations and data representation to the operations and data
representation of NNEF, given that this mapping is possible.
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NNEF also aims to be a distilled collection of deep learning operations that are widespread in
successful neural architectures. It is the result of studying open-source deep learning frameworks
such as Caffe, Torch, Theano, TensorFlow, CNTK, Chainer, and abstracting out the computations and
data structures common to them. It mainly focuses on operations that are possibly efficiently
implementable on various target hardware, such as massively parallelizable operations, especially
'local' ones that require a locally concentrated subset of the input data to compute outputs.

1.1.2. The ImporterÕs view of NNEF

The importer of NNEF, such as a neural network accelerator library (and its underlying hardware),
is able to import an NNEF document, and compile it to its internal representation ready for
execution. This compilation may happen offline or online. During offline compilation, NNEF may be
converted to an optimized, hardware specific representation format, which may be saved and later
be quickly loaded for execution. During online compilation, the conversion and optimization may
happen without saving it into a hardware specific format, but immediately executing the converted
network.

NNEF collects operations into groups to indicate relatedness of operations. This may serve as a hint
or guideline for hardware implementations, as related operations may require similar hardware
capabilities.

1.1.3. The Application ProgrammerÕs view of NNEF

For an application programmer, NNEF is a standardized way to store and transfer neural networks.
Given a neural network in NNEF format, and a driver or library that is able to import it, the
application programmer need not worry about where the network came from or what kind of
underlying hardware will execute it, as long as it has the capabilities to do so. The application
programmer may query the driver of the underlying hardware whether it is capable of executing
the given network.

1.1.4. What NNEF is not

NNEF is not an API (Application Programming Interface). It does not define an execution model for
neural networks, and hence it does not define what it means to correctly execute a neural network
described in NNEF. Although it does define the semantics of operations supposing infinite
arithmetics, defining correct execution of actual implementations would require finite arithmetics
and underlying representations to be taken into account, which is out of the scope of NNEF.

Libraries that produce or consume NNEF may have various APIs. However, importantly for
application programmers, an NNEF consumer that intends to execute a neural network will most
probably have functionalities to import and compile a network described in NNEF, and feed that
network with data afterwards. However, the exact nature of this API is out of the scope of NNEF.
One such API is described by the OpenVX Khronos standardÕs neural network extension, along with
an execution model of neural networks.

1.2. Specification Terminology
The key words must , required , should , recommend , may , and optional  in this document are to be
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interpreted as described in RFC 2119:

http://www.ietf.org/rfc/rfc2119.txt

must

When used alone, this word, or the term required , means that the definition is an absolute
requirement of the specification. When followed by not  (Òmust not Ó ), the phrase means that the
definition is an absolute prohibition of the specification.

should

When used alone, this word means that there may exist valid reasons in particular
circumstances to ignore a particular item, but the full implications must be understood and
carefully weighed before choosing a different course. When followed by not  (Òshould not Ó), the
phrase means that there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full implications should be understood
and the case carefully weighed before implementing any behavior described with this label. In
cases where grammatically appropriate, the terms recommend  or recommendation  may be
used instead of should .

may

This word, or the adjective optional , means that an item is truly optional. One vendor may
choose to include the item because a particular marketplace requires it or because the vendor
feels that it enhances the product while another vendor may omit the same item. An
implementation that does not include a particular option must be prepared to interoperate with
another implementation, which does include the option, though perhaps with reduced
functionality. In the same vein an implementation that does include a particular option must be
prepared to interoperate with another implementation, which does not include the option
(except, of course, for the feature the option provides).

The additional terms can  and cannot  are to be interpreted as follows:

can

This word means that the particular behavior described is a valid choice for an application, and
is never used to refer to implementation behavior.

cannot

This word means that the particular behavior described is not achievable by an application.

!
There is an important distinction between cannot  and must not , as used in this
Specification. Cannot  means something the format literally is unable to express,
while must not  means something that the format is capable of expressing, but that
the consequences of doing so are undefined and potentially unrecoverable for an
implementation.

4
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Chapter 2. Fundamentals
This chapter introduces fundamental concepts including computational graphs, operations and
tensors, NNEF syntax and data description. It provides a framework for interpreting more specific
descriptions of operations and network architectures in the remainder of the Specification.

2.1. Computational Graphs
A neural network can be described by a computational graph. The computational graph is a
directed graph that has two types of nodes: data  nodes and operation  nodes. A directed edge from a
data node to an operation node means that the operation takes the data as its input, while a
directed edge from an operation node to a data node means that the operation produces the data as
its output. Edges from data node to data node or from operation node to operation node are not
allowed.

As an example, a simple multi-layer feedforward network can be described by a linear graph,
starting from an input data node, where each layer corresponds to an operation node producing a
new intermediate data node, while taking the previous (intermediate) data as input, finally
producing some output data.

Data nodes represent multi-dimensional arrays (such as vectors, matrices, or arrays of higher
dimension), called tensors . The computation starts from data nodes that represent externally
provided data or constant or variable tensors internal to the graph. In order to make the
description uniform, such data nodes are the results of special tensor introducing operations . Thus,
the whole computational graph is described by a set of operations, interconnected by data nodes.

E Op

C

T

Op T

E

C

Op

C

T Op

C

T

V

Figure 1. An example computational graph: squares denote tensor data (E: external, C: constant, V:
variable, T: regular tensor), ellipses denote operations

Computational graphs describe a single step  of neural network computation, that is, the
computation performed upon a single input  (or single batch of inputs) is fed to the graph. This
trivially describes feedforward networks, but not all networks are that simple. Recurrent networks
introduce dependencies among steps by allowing some tensor values computed in one step be used
in the next step, therefore letting the result of the overall computation depend on a sequence of
inputs . In order to maintain a clear and easy-to-validate description, the computation of each step is
described by an acyclic graph, and the amount of cyclic dependency required for recurrent
networks is achieved via variable tensors that can be updated in each step and retain their values
between consecutive steps. To achieve this, a special operation is introduced to update variable
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tensors (see Variable Updates ).

2.2. Description of Data
A multi-dimensional array can be described by its number of dimensions (rank) and its extent  in
each dimension (its shape). Conceptually, a multi-dimensional array is infinite dimensional, the
irrelevant (trailing) dimensions being of extent 1 (hereafter referred to as singleton  dimension). In
this description, we do not restrict the number of dimensions, and consider the dimensions that are
not explicitly described to be singleton. Of course, in practice, an implementation restricts the
number of supported  dimensions. The minimum number of supported dimensions is 2. Dimensions
are indexed starting from 0. The product of all extents is called the volume  of the tensor (note that
trailing singleton dimensions do not effect the volume).

In the computational graph, each tensor must have a well-defined shape. The operations external ,
constant  and variable  define the shape of the introduced tensors explicitly, thus providing shape for
those tensors that constitute the starting points of the computation. All other operations define the
shape of their result tensors as a function of the shape of their input tensors, this way propagating
shape information through the computational graph.

In order to describe the structure of a computational graph, no actual data is needed. However,
when the graph is to be executed, actual data is required for those tensors that serve as parameters
to the computation, such as variables that have a previously computed value. Thus, apart from the
structural aspects of data nodes, their actual data also needs to be defined somewhere. The
Specification introduces a binary format for describing the contents of individual tensors.

!
Consumers of an NNEF document are free to replace the shape of external tensors
and propagate shapes accordingly as long as it does not lead to invalid arguments
of operations in the computational graph.

2.3. Description of Operations
Apart from data nodes, an operation node may have attributes that detail the exact computation
performed. Operation nodes have well-defined semantics that specify the mapping of input(s) to
output(s) including the shape and content of the output tensors depending on those of the input
tensors.

Computational graphs may be described in a flat  or in a compositional  manner. In a compositional
description an operation may be expressed in terms of other, simpler operations. Hence, the
description of a computational graph may be organized into a hierarchy. A flat description does not
group operations into larger units.

NNEF graph description syntax can be divided into two parts: a core part that is required for a flat
description, and an extension part that can describe compound operations. In case of a
compositional description, operations fall into two major categories:

¥ primitive  : operations that cannot be expressed in terms of other operations

¥ compound  : operations that can be built from other operations
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Compound operations can still be considered valid by a flat description, however, they are also
treated as atomic primitives.

Below is a graphical illustration of how larger and larger sub-graphs are built, until the whole
graph is defined:

Compound

Compound

Primitive Primitive Primitive Primitive Primitive Primitive Primitive Primitive

Compound Compound

Graph

Figure 2. Hierarchical building of compound fragments and the graph

A compositional description is useful as it conveys higher order structure in the graph, grouping
frequently occurring sub-graphs. This facilitates a compact description, conveys more information
than a flat description, and execution engines may leverage such structural information. However,
a compositional description is more complex, more difficult to compile. Thus, where a flat
description is sufficient, it is possible to use just the appropriate sub-set of NNEF syntax.

When describing operations, primitives need to specify their input-output mapping, including the
computation they perform and the shapes and data-types of their results as a function of their
inputs. The semantics of these primitive operations are expressed by mathematical formulae. On
the other hand, compound operations are built from primitives, and the way they are built
provides them with semantics that can be derived from the primitives. This way, the whole
computational graph will have well-defined semantics.

In order to be able to describe compound operations in terms of other operations (primitive or
compound), a procedural  notation is used. Popular deep learning frameworks typically utilize a
general-purpose scripting language (such as Python). The present description of graph structure
mimics a simple subset of such scripting languages, built around a graph fragment  construction
which lets a parameterized operation be specified in terms of other lower level operations. This
methodology can be applied to describe graphs of whole neural networks in a compact manner.

2.4. Overview of Graph Description and Usage
The purpose of this format is to describe a computational graph that can ultimately be executed,
however, the format itself does not define an execution model, only the structure and the data
parameters of the graph. In order to do so, a simple textual format describes the structural aspects
of the computational graph. Accompanying this textual format is a data storage format that
describes external tensor parameters of the computational graph.

This document is structured as follows. Chapter Formal Description  details the syntax  and the
semantics  of the textual format. Chapter Operations  describes a set of primitive and compound
operations from which computational graphs can be built, along with their parametrization and
semantics. Chapter Storing Network Data  describes the binary format to store network weights.

To give a clearer picture of how the format may be used, we describe how these pieces may be fit
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together to compile and execute a computational graph.

2.4.1. Graph Compilation and Execution

The compilation of a computational graph starts from:

¥ A byte stream (textual) describing the computational graph as a sequence of operations .

¥ An optional byte stream (binary) containing the data of serialized  external tensor parameters to
the graph.

On a conceptual level, the compilation process may have the following steps:

¥ Parse the structural description, check its validity according to the rules in Formal Description .

¥ If the description is compositional, expand the hierarchy of operations into primitives, by
evaluating compile-time expressions of attributes, resulting in a flattened structure.

¥ Propagate tensor shapes, perform argument checking for operations as described in Operations .

An implementation is not restricted to compile a graph of primitive operations as listed in
Operations , but instead it may implement operations such as those in the Compound Operations  as
atomic ones for improved efficiency. After building an executable graph, an implementation may
optimize it for example by removing intermediate buffers and unnecessary operations or merging
sequences of operations.

After the compilation process, the graph execution may have the following steps:

¥ Load previously serialized data or feed initial values to tensors declared as variables.

¥ In each cycle, feed values to tensors declared as external inputs, execute required operations,
read out outputs.

¥ Save updated variables if necessary.

Note again that the exchange format does not define an execution model of the computational
graph being described. The above is just an example of how it might be used.

2.5. Glossary of Terms
The following terms are used frequently in the Specification and are listed explicitly here:

attribute

A non-tensor parameter to operations that define further details of the operation. Attributes are
of primitive types whose values are known at graph compilation-time, and hence expressions of
attributes can be evaluated at graph compilation-time.

compound operation

An operation that is defined in terms of other operations. Its semantics are defined via the
composition of the operations that it is defined by.

computational graph
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A graph with nodes that are either operations or tensors. Operation nodes are connected to
tensor nodes only, and vice versa.

graph fragment

A sub-graph in the whole graph (network). A fragment can be described by a set of operations
interconnected by tensors.

graph compilation-time

The time when the graph is built before execution. Analogous to compilation-time for
programming languages.

graph execution-time

The time when the graph is run (possibly multiple times) after building. Analogous to run-time
for programming languages.

operation

A mapping of input tensors to output tensors.

primitive operation

An operation that is not defined in terms of other operations. Its semantics are defined via
mathematical formulae.

rank (of a tensor)

The number dimensions of a tensor explicitly specified in a shape or implicitly defined by shape
propagation. Note that a shape explicitly defined as (5,1) has rank 2, even though its last
dimension is singular.

row-major order

A generalization of row-major data layout of matrices to multi-dimensional arrays. Data is laid
out in an order where multi-indexing varies fastest along the last dimension, and slowest along
dimension 0. Note that the definition is valid for conceptually infinite dimensional data as well,
since the trailing singleton dimensions only introduce trailing 0 indices in the conceptually
infinite multi-index.

shape (of a tensor)

A list of integers defining the extents of a tensor in each relevant dimension.

tensor

A multi-dimensional array of scalars that represents data flow in the graph. The number of
dimensions is conceptually infinite; the insignificant trailing dimensions are 1 (singleton
dimension). The minimal number of actually supported dimensions by an implementation is 2.

variable tensor

A tensor whose value can be updated by a designated operation. All other tensors are
conceptually immutable; each operation generates a new tensor.

volume (of a tensor)

An integer value that is the product of extents of a shape.
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Chapter 3. Formal Description
This chapter provides a formal description of the exchange format for the structural aspects of the
computational graph. It is a simple notation with the goal to describe the building of computational
graph fragments from lower level building blocks, ultimately arriving to the description of whole
network graphs.

A grammar in Backus-Naur Form (BNF) is used to describe the syntax  of the notation. First, the
lexical elements  of the grammar are defined, and the constraints  associated with valid
computational graphs are also enumerated.

3.1. Lexical Elements
The description format is made up from the following lexical entities:

<identifier>

An identifier is an alphanumeric sequence of ASCII characters that may also contain the
underscore character. More specifically, identifiers must  consist of the following ASCII
characters: _, [a-z] , [A-Z] , [0-9] . The identifier must not  start with a digit.

<numeric-literal>

A numeric literal consists of an integer part, an optional decimal point ( . ) and a fractional part,
an e or E and an optionally signed integer exponent. The integer, fractional and the exponent
parts must  each consist of a sequence of decimal (base ten) digits ( [0-9] ). In case of flat syntax,
the literal may be preceded by an optional -  (minus) sign. In case of compositional syntax, the
unary minus operator is used to enable negative numeric values, hence the -  sign is not allowed.

<string-literal>

A string literal is a sequence of characters enclosed within '  or "  characters. The end and start
quotes must  match. Any printable ASCII character may appear within the string, except for the
start quote character, which must  be escaped by the \  character. The \  character must  also be
escaped with the \  character.

<logical-literal>

Logical literals are the values true  and false .

<keyword>

The following alphabetic character sequences have special meaning with respect to the
description syntax and thus must not  be used as identifiers: version , extension , graph, fragment,
tensor , integer , scalar , logical , string , shape_of, length_of , range_of, for , in , yield , if , else .

<operator>

The following character sequences have special meaning as operators in mathematical
expressions: +, - , * , / , ̂ , <, <=, >, >=, ==, != , &&, || , ! .

Syntactic characters

The following characters have special syntactic meaning: ( , ) , [ , ] , { , } , : , =, , , ; , ->.
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White spaces

White space characters may be inserted between any lexical entities. They include the space
character, the control characters representing horizontal tab, vertical tab, form feed and new-
line.

Comments

Comments are introduced by the # symbol, and last until the end of the line (either until form
feed or new line characters).

3.2. Syntax
The central concept in computational graphs is an operation that maps input tensors into output
tensors. Operations need to be declared, and a computational graph description is built from the
declared operations. Therefore, we separate the description into two key parts:

¥ The declaration of possible operations for building graphs. Operations have a name and a list of
parameters and results. Formal parameters are typed , identifying what kind of expressions can
be substituted in their place.

¥ The actual graph description consists of a list of operation invocations that are validated against
the declarations. The operations are invoked by referencing their names and supplying
arguments in place of their formal parameters.

Furthermore, the description of syntax is separated into the constructions sufficient for a flat
description and extensions required for compositional  descriptions.

The following BNF notation introduces the description syntax in a more formal manner. Everything
defined by ::=  below is part of the BNF description, and constitutes valid syntax. Anything outside
of the grammar defined by these BNF rules is considered invalid syntax.

3.2.1. Graph Definition

A graph definition consists of a graph declaration and its body. The graph declaration has a list of
parameters and results.

<graph-definition> ::= <graph-declaration> <body>
<graph-declaration> ::= " graph" <identifier> " ( " <identifier-list> " ) "
Ê                       " ->" " ( " <identifier-list> " ) "
<identifier-list> ::= <identifier> (" , " <identifier>)*

The graph definition itself consists of a list of assignments, where the left-hand-side of the
assignment is an identifier expression (single identifier, tuple or array), and the right-hand-side is
an operation invocation.

<body> ::= " { " <assignment>+ " } "
<assignment> ::= <lvalue-expr> " =" <invocation> " ; "
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An invocation consists of an identifier and a list of arguments:

<invocation> ::= <identifier> [" <" <type-name> " >"] " ( " <argument-list> " ) "
<argument-list> ::= <argument> (" , " <argument>)*
<argument> ::= <rvalue-expr> | <identifier> " =" <rvalue-expr>

Expressions may be literals, identifiers, arrays and tuples. It is necessary to differentiate between
left-value and right-value expressions.

Left-value expressions are allowed on the left-hand-side of assignments:

<array-lvalue-expr> ::= " [ " [<lvalue-expr> (" , " <lvalue-expr>)* ] " ] "
<tuple-lvalue-expr> ::= " ( " <lvalue-expr> (" , " <lvalue-expr>)+ " ) " |
Ê                           <lvalue-expr> (" , " <lvalue-expr>)+
<lvalue-expr> ::= <identifier> | <array-lvalue-expr> | <tuple-lvalue-expr>

Right-value expressions are allowed on the right-hand-side of assignments (as argument values):

<array-rvalue-expr> ::= " [ " [<rvalue-expr> (" , " <rvalue-expr>)* ] " ] "
<tuple-rvalue-expr> ::= " ( " <rvalue-expr> (" , " <rvalue-expr>)+ " ) "
<rvalue-expr> ::= <identifier> | <literal> | <array-rvalue-expr> | <tuple-rvalue-expr>

<literal> ::= <numeric-literal> | <string-literal> | <logical-literal>

Invocations may have multiple results (if the operation defines multiple results). In this case, the
returned expression is a tuple, and the left-hand-size expression must also be a tuple.

As an example, using the declarations above, we may define part of a graph as:

graph barfoo( input ) -> ( output )
{
Ê   input = external(shape = [1,10]);
Ê   intermediate, extra = bar(input, alpha = 2);
Ê   output = foo(intermediate, size = [3,5]);
}

In the above example, external  is an operation used to introduce tensors that receive their data
from an external source (see Tensor Introducing Operations ), and exemplary operations bar and
foo  are defined below.

3.2.2. Fragment Definition

The following syntax elements must  be enabled by the extension KHR_enable_fragment_definitions .

A fragment is similar to the graph in that its body is defined by a list of assignments, but its
declaration allows typed formal parameters and results.
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<fragment-definition> ::= <fragment-declaration> <body>

An fragment declaration is introduced by the fragment keyword, has a name, a parameter list and a
result list. Parameters are explicitly typed and may have default values. Results are introduced
after the -> symbol.

<fragment-declaration> ::= " fragment" <identifier> [<generic-declaration>]
Ê                          " ( " <parameter-list> " ) " " ->" " ( " <result-list> " ) "
<generic-declaration> ::= " <" " ?" [" =" <type-name>] " >"
<parameter-list> ::= <parameter> (" , " <parameter>)*
<parameter> ::= <identifier> " : " <type-spec> [" =" <literal-expr>]
<result-list> ::= <result> (" , " <result>)*
<result> ::= <identifier> " : " <type-spec>

Default values are literal expressions built from literals only:

<array-literal-expr> ::= " [ " [<literal-expr> (" , " <literal-expr>)* ] " ] "
<tuple-literal-expr> ::= " ( " <literal-expr> (" , " <literal-expr>)+ " ) "
<literal-expr> ::= <literal> | <array-literal-expr> | <tuple-literal-expr>

A type specification may denote a primitive type, an array type or a tuple type.

<type-name> ::= " tensor " | " integer " | " scalar " | " logical " | " string " | " ?"
<tensor-type-spec> ::= " tensor " " <" [<type-name>] " >"
<array-type-spec> ::= <type-spec> " [] "
<tuple-type-spec> ::= " ( " <type-spec> (" , " <type-spec>)+ " ) "
<type-spec> ::= <type-name> | <tensor-type-spec> |
Ê               <array-type-spec> | <tuple-type-spec>

For example, the following lines show some operation declarations:

fragment foo( input: tensor<scalar>, size: integer[] = [1] )
-> ( output: tensor<scalar> )

fragment bar( input: tensor<scalar>, alpha: scalar = 0.5 )
-> ( output: tensor<scalar>, extra: tensor<scalar>[] )

3.2.3. Operator Expressions

The following syntax elements must  be enabled by the extension KHR_enable_operator_expressions.

The syntax enables more complex expressions to be used as right-value expressions. These
expressions allow for compile-time arithmetic and argument composition.

Various arithmetic, comparison and logical operators can be used to build binary expressions:
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<comparison-operator> ::= " <" | " <=" | " >" | " >=" | " ==" | " != " | " in "
<binary-arithmetic-operator> ::= " +" | " - " | " * " | " / " | " ^"
<binary-logical-operator> ::= " &&" | " || "
<binary-operator> ::= <comparison-operator>
Ê                   | <binary-arithmetic-operator>
Ê                   | <binary-logical-operator>

A handful of unary operators are also available for arithmetic and logical expressions:

<unary-arithmetic-operator> ::= " +" | " - "
<unary-logical-operator> ::= " ! "
<unary-operator> ::= <unary-arithmetic-operator>
Ê                  | <unary-logical-operator>

Operator expressions can then be built using unary and binary operators and parenthesizing:

<unary-expr> ::= <unary-operator> <rvalue-expr>
<binary-expr> ::= <rvalue-expr> <binary-operator> <rvalue-expr>
<paren-expr> ::= " ( " <rvalue-expr> " ) "

The if-else expression implements branching by selecting one of two expressions depending on a
condition.

<if-else-expr> ::= <rvalue-expr> " if " <rvalue-expr> " else " <rvalue-expr>

The array comprehension expression implements a form of looping. It generates an array by
iterating one or more others, optionally filtering the resulting items.

<loop-iter> ::= <identifier> " in " <rvalue-expr>
<loop-iter-list> ::= <loop-iter> (" , " <loop-iter>)*
<comprehension-expr> ::= " [ " " for " <loop-iter-list> [" if " <rvalue-expr>]
Ê                        " yield " <rvalue-expr> " ] "

!
When a comprehension expression contains an if  condition, the if  is interpreted
as part of the comprehension expression and not as part of an if-else expression
inside the comprehension expression following the in  keyword.

Subscripting expressions can reference a single entry in an array, or a range of entries, in which
case the start (inclusive) and end (exclusive) of the range is separated by : . Both the start and the
end are optional, in which case 0 or the length of the array is taken, respectively.

<subscript-expr> ::= <rvalue-expr> " [ " (<rvalue-expr> |
Ê                    [<rvalue-expr>] " : " [<rvalue-expr>]) " ] "
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A few special keywords can be used for built-in functions.

<builtin-name> ::= " shape_of" | " length_of " | " range_of"
Ê                | " integer " | " scalar " | " logical " | " string "
<builtin-expr> ::= <builtin-name> " ( " <rvalue-expr> " ) "

Finally, extended right-value expressions are the union of all the above constructions (including the
ones in the definition of basic right-value expressions and invocations). Assignments may contain
any right-value expression, not only invocations:

<rvalue-expr> ::= <identifier>
Ê               | <literal>
Ê               | <binary-expr>
Ê               | <unary-expr>
Ê               | <paren-expr>
Ê               | <array-rvalue-expr>
Ê               | <tuple-rvalue-expr>
Ê               | <subscript-expr>
Ê               | <if-else-expr>
Ê               | <comprehension-expr>
Ê               | <builtin-expr>
Ê               | <invocation>

<assignment> ::= <lvalue-expr> " =" <rvalue-expr> " ; "

3.2.4. The Whole Document

The NNEF structure description consists of a version info, an optional list of extensions used, an
optional list of operation definitions and a top-level graph definition. An NNEF document that does
not contain operation definitions and extended expressions is said to be flat . A graph definition
must be always present.

<document> ::= <version> <extension>* <fragment-definition>* <graph-definition>

The version info is introduced by the version  keyword, and is defined by a real-number numeric
literal as major and minor versions separated by a dot:

<version> ::= " version " <numeric-literal> " ; "

Extensions can be specified after the extension  keyword:

<extension> ::= " extension " <identifier>+ " ; "
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!

Three types of extensions are distinguished, and this is reflected in naming
conventions:

¥ Khronos extensions use the format: KHR_extension_name.

¥ Cross-vendor extensions use the format EXT_extension_name.

¥ Vendor-specific extensions use the format VENDOR_extension_name, where
VENDOR is the actual name of the vendor.

Here is a short example for illustration:

version 1.0;
extension KHR_enable_fragment_definitions;

fragment foo( input: tensor<scalar>, flag: logical ) -> ( output: tensor<scalar> )
{
Ê   output = ...
}

fragment bar( input: tensor<scalar>, param: scalar ) -> ( output: tensor<scalar> )
{
Ê   output = ...
}

graph foobar( input ) -> ( output )
{
Ê   input = external(shape = [4,10]);
Ê   hidden = foo(input, flag = true);
Ê   output = bar(hidden, param = 3.14);
}

Note, that it is possible to build networks solely from predefined operations (see Operations ), which
need not be defined in an actual document description. Therefore, fragment definitions are usually
unnecessary. Furthermore, the graph definition body can usually be written without using operator
expressions; they are most useful for defining compound operations. Hence, networks without
custom operations can usually be written using flat syntax only.

3.3. Semantics
The following subsections define when a syntactically  valid document made up of fragment
definitions is also semantically well-defined. Semantic validity rules describe the proper definition
and invocation of fragments, including proper naming and referencing, argument number,
argument types, argument ranges, proper usage of declared parameters and local identifiers.

3.3.1. Type System and Type Checking

In the grammar defined in Syntax , formal parameters of operations are explicitly typed.
Furthermore, literal constants also have an implicitly defined type. The types of expressions are
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derived from the types of their arguments.

Types can either be primitive or compound. Compound types are composed from primitives or
from other compound types.

Primitive Types

The following primitive-types are defined:

¥ integer  : a signed integer value used to describe tensor shapes, dimensions and indices into
tensors

¥ scalar  : a real value used to describe data and parameters in operations

¥ logical  : a logical value typically used to describe flags and branching conditions

¥ string  : a general character sequence, used to denote enumerations and names

The primitive types are used to denote parameters whose values are known in compile-time.

Compound Types

Compound types follow a few construction templates:

¥ Tensor types  are built from a single data-type, which must  be a primitive type. For example
tensor<scalar>  is a tensor of scalars. Tensors represent data on which run-time computations is
preformed. A tensor type may be unbound , that is, without data-type, using the tensor<> syntax.

¥ Array types  are built from a single item type. Each item in the array has the same type. For
example, integer[]  is an array of integers.

¥ Tuple types  are built from multiple item types and always have a fixed number of items. For
example, (integer,scalar)  is a tuple of an integer and a scalar.

A type is said to be an attribute  type if it does not contain tensor types. Tuples must not  contain
both tensor and non-tensor item types at the same time to separate run-time data parameters and
compile-time attribute values.

The item type of a compound type may also be a compound type (except for tensors), thus enabling
arrays of arrays, arrays of tuples or a tuple that contains an array. For example scalar[][]  is a 2-
dimensional scalar array (where each sub-array may be of different length), (integer,scalar)[]  is
an array of tuples, and (integer[],scalar)  is a tuple that contains an array and a scalar.

Unbound tensors cannot be the result of an operation, they can only be used to declare inputs
whose data-types do not need to be checked or agreed with other tensors.

! It is up to the implementation of inference engines how tensor data types are
represented.

Generic Types

The syntax offers a limited way of constructing generic types via the use of ? symbol in place of a
primitive type. It may also be used in compound types to denote for example generic tensors as
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tensor<?> or generic arrays as ?[] . The generic symbol can be used in fragment declarations to
declare that an operation can be applied to tensors of any data-type. For example

fragment buzz<?>( input: tensor<?>, param: ? ) -> ( output: tensor<?> )

declares an operation buzz to be applicable to tensor of any data-type. The definition also implies
that the data-type of the parameter input  must be the same as the type of parameter param, and that
the data-type of result output  will be inherited from input.

When invoked, the generic data-type ? may be inferred from the actual arguments. However, there
may be fragments that do not have inputs of generic type, only the output is generic. For this case,
the generic type may have an optional default value.

fragment fizz<? = scalar>( shape: integer[] ) -> ( output: tensor<?> )

In this case, the generic parameter must be explicitly supplied, or if not, the default value is used.

a = fizz<integer>(shape = [...])    # explicit integer data-type
b = fizz(shape = [...])             # default scalar data-type

In case the generic parameter needs to be propagated in a compound operation, it can be done
using <?> after the name of the operation:

fragment fizz<? = scalar>( shape: integer[] ) -> ( output: tensor<?> )
{
Ê   output = buzz<?>(...);
}

Types of Literal Constants

The types of literal constants are as follows:

¥ The type of <numeric-literal>  is either integer  or scalar  depending on whether it denotes an
integer or a real value, respectively.

¥ The type of <string-literal>  is string .

¥ The type of the constants true  and false  is logical .

¥ The type of the literal []  is the special type empty-array-type . This type cannot be declared
explicitly.

Type Casting

Only the following implicit type casts are allowed (all others are disallowed):

¥ Primitive types can be cast to the tensor types of the corresponding data-type when the tensor
type denotes an input of a fragment, but casting from primitive types to tensors is not allowed

18



for outputs of a fragment.

¥ Any primitive can be cast to the generic type ?, and any (bound) tensor type can be cast to the
generic type tensor<?>

¥ Any tensor type can be cast to the unbound tensor type tensor<>.

¥ An array type can be cast to another array type if its item type can be cast. The empty-array-type
can be cast to any other array type, but no other array type can be cast to the empty-array-type.

¥ A tuple type can be cast to another tuple type if they have the same number of items and the
corresponding item types can be cast to those of the other tuple type.

Two types have a common type if either of the two can be cast to the other one.

When parameters of primitive type are substituted in place of tensor parameters, they behave as
constant tensors of singleton shape.

When an expression is substituted in place of a formal parameter in an invocation of an operation
or is assigned to the result of a fragment, the expression type must  be equal or castable to the
formal parameter or result type; otherwise the invocation is invalid.

Furthermore, explicit type casting between primitive types can be forced using built-in functions
where necessary.

3.3.2. Graph and Fragment Definition

Declarations

Each fragment declaration must  have a unique name. Fragments are identified only based on their
name. A valid declaration must  satisfy the following criteria:

¥ Formal parameter names and result names must  be unique within a declaration, that is, valid
declarations must not  contain multiple formal parameters or results with the same name (of
course, different declarations may use the same formal parameter names).

¥ Parameters of tensor type must  precede attributes.

¥ Fragment results must  be either all tensors or all attributes to clearly separate run-time
operations from compile-type attribute computations.

¥ The default value expression type must  match the type of the formal parameter.

Generic fragments may be defined by appending <?> after the name of the fragment. The symbol ?
is used to refer to the generic type parameter within the fragment declaration and body. The
generic type parameter may have an optional default value using <? = ...>  syntax. See Generic
Types for further details.

If a fragment has at least one generic parameter or result type, it must  be declared as generic. In
return, if a fragment is declared as generic, it must  have at least one generic parameter or result
type.
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Invocations

Invocations must  assign a unique argument value to each formal parameter that does not have a
default value. Formal parameters with default values can also be assigned a different value.

There are two ways to assign values to formal parameters: position based ( positional argument ) and
name based ( named argument ). Positional arguments correspond to formal parameters in the order
of their declaration. Named arguments may occur in any order, independent of the order of
declaration of formal parameters. Only tensor arguments may be positional, attribute values must
be named arguments (see Type System and Type Checking ).

A valid invocation must  satisfy the following criteria:

¥ The operation name in the invocation must  correspond to a declared operation.

¥ An invocation must not  have more arguments than the number of formal parameters in the
declaration.

¥ Each formal parameter that does not have a default value must  be assigned an argument value.

¥ Positional arguments must  precede named arguments.

¥ Each named argument must  have a name that corresponds to a formal parameter declared for
the operation.

¥ Named arguments must  be unique, that is, each parameter name may occur only once in an
invocation.

¥ A named argument must not  refer to a formal parameter that is also assigned by a positional
argument.

¥ Generics fragments may be called with an explicit type specifier using name<type> syntax.
Furthermore, name<?> syntax may be used when a generic parameter type needs to be
propagated inside the body of a generic fragment. If a generic fragment has a default value for
its generic type and is invoked without an explicit generic argument, the default value of the
generic type is substituted.

In an invocation, formal parameters that have a default value and are not assigned any value get
their default values substituted.

If a fragment is generic and an explicit generic parameter type is not specified, and has no default
value for its generic type, then the value of the generic parameter is deduced from the invocation
arguments. The deduction must  result in a unique value. If it results in multiple or no candidates,
the invocation is invalid.

Assignments

The right-hand-side of an assignment can be any kind of expression, however, the left-hand-side
must  be an identifier or an array or tuple (or any such combination) of identifiers to which the
results are unpacked. That is, an array in a tuple is permitted, but invocations and constant
expressions are not allowed on the left-hand-side.
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Identifier Usage in the Graph and Fragment Body

The rules for valid formal identifier usage are as follows:

¥ Parameters of a fragment  must not  appear on the left-hand side of an assignment within the
fragment body, they can only be used as arguments of expressions on the right-hand side of
assignments.

¥ Parameters of a graph  (which are implicitly of type tensor) must  be defined as the result of an
external  operation. The external  operation must not  be used in a fragment.

¥ Results of a fragment must  be assigned exactly once within the fragment body.

¥ Local identifiers within a fragment or within the main graph must  first appear on the left-hand
side of an assignment before used as arguments in expressions on the right-hand side of
subsequent assignments.

¥ The same identifier must not  be used on the left-hand side of assignments more than once
(within a fragment, or within the main graph).

¥ All individual identifiers in the graph  body must  be of type tensor. That is, identifiers of type
tensor array, tensor tuple and primitive types are not allowed. When tensor arrays or tuples are
used on the left-hand-side of assignments, they must be explicitly constructed from individual
tensor identifiers via array or tuple expressions.

The above rules ensure that the resulting graph is acyclic and the order in which the operations are
written in the body results in a valid topological ordering of the graph. However, it is not the only
valid ordering, and operations can  be reordered or executed in parallel as long as the above
constraints are satisfied.

The purpose of disallowing identifiers of type tensor array or tensor tuple in the graph body, is to
let each tensor be identifiable by an individual name.

Argument Validity

Each operation may further restrict the set of allowed parameters beyond what is generally
considered valid according to type checking . For example, operations may restrict their attributes
to be in specific ranges. Operations that have multiple tensor parameters may define tensor shape
agreement rules, and they also define the shapes of their results. These rules are specific to each
operation, and are described separately for each primitive in Operations .

3.3.3. Building Expressions

The expressions described here mainly use extended syntax (except for simple array and tuple
construction). The purpose of such expressions is two-fold:

¥ One is to serve as a short-hand notation for certain operations. For example, for tensors a and b,
a + b  is equivalent to add(a,b) .

¥ The other is to build or calculate attribute values of operations. For example, an operation may
require an array of integers, and that can be built with an expression such as [1,2,3] .

Thus, expressions are either of frequently used arithmetic, comparison or logical operators, or
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serve the purpose of manipulating a data structure, such as an array or a tuple to serve as
arguments for operations. When manipulating data structures, the typical set of operations that are
required are building a data structure from its components or parts, and dissecting a data structure
to its components or parts.

The following subsections describe built-in operators and data-structure manipulator notations.

Built-in Operators

Arithmetic, comparison and logical expressions can be built from identifiers and constants (see
Syntax ). An expression can be a constant expression, which is built only from primitive types, and it
can be non-constant expression, in which case it can be mapped to primitive operations (see
Operations ). The following table summarizes the allowed argument types and the resulting type for
each operator. All operators are also applicable to tensors, hence they are not listed here explicitly.
In this case, the result is also a tensor (of the appropriate data-type). If at least one of the arguments
is a tensor, the operation is mapped to the appropriate fragment. In this case, argument types must
be checked in the same way as if the fragment was explicitly called.

Arithmetic operators that are applicable to scalar  are also applicable to integer  arguments (but not
mixed), in which case the result is also an integer . Comparison operators that are applicable to any
primitive type (marked by ? below just like generic types) must have arguments of the same type.

Table 1. List of built-in operators; parameter and result types, and mapping to fragments

Operator Argument types Result type Fragment

+ scalar scalar copy

- scalar scalar neg

+ scalar, scalar scalar add

- scalar, scalar scalar sub

* scalar, scalar scalar mul

/ scalar, scalar scalar div

^ scalar, scalar scalar pow

< scalar, scalar logical lt

<= scalar, scalar logical le

> scalar, scalar logical gt

>= scalar, scalar logical ge

== ?, ? logical eq

!= ?, ? logical ne

! logical logical not

&& logical, logical logical and

|| logical, logical logical or

Uses of the above operators with argument types other than those listed above result in invalid
expressions.
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The semantics of arithmetic operators +, - , * , / , comparison operators <, <=, >, >=, ==, !=  and logical
operators &&, || , !  is as per their common definitions. Furthermore, the binary operator in  tests if
an item is contained in an array .

The precedence of the operators is as follows, from lowest to highest, equal ones grouped in curly
braces: { in  }, { &&, ||  }, { <, <=, >, >=, ==, !=  }, { +, -  }, { * , /  }, { ^ }.

Arrays

When building arrays, items must  be of the same type or it must  be possible to cast all items to a
common type.

The simplest way to build an array is to enumerate its items, such as [a,b,c] . Alternatively, arrays
can be built by concatenating two arrays using the + operator, such as [a,b] + [c,d]  resulting in
[a,b,c,d] , or x + y  where x and y are themselves arrays. As a generalization of concatenation, the *
operator can be used to duplicate an array several times. For example, [a,b] * 2  results in
[a,b,a,b] .

To access an item or range of items in an array, the subscript operator []  can be used. Array
indexing starts from 0, and goes until the length of the array minus 1. There are two types of
subscript expressions, depending on the expression inside the [] :

¥ If the subscript expression is a single expression of type integer , the result is a single item of the
array and the type of the subscript expression is that of the item type of the array. For example
if a = [1,2,3]  then a[1]  equals 2.

¥ If the subscript expression is a range (two expressions of type integer  delimited by : ), then the
result is a sub-sequence of the array and the type of the subscript expression is the same as the
array type. The start of the range is inclusive; the end is exclusive. The range may be open at
both ends (by omitting the expressions before or after the : ). If it is open at the beginning, it is
defined to start from 0. If it is open at the end, the end is defined to be the length of the array. If
the beginning is less than or equal to the end, the result is the empty array. For example let a =
[1,2,3] , then a[0:2]  is equivalent to a[:2]  and equals [1,2] , or a[1:3]  is equivalent to a[1:]  and
equals [2,3] . Furthermore, a[2:2]  equals [] .

The in  operator can be used to test whether an item is contained in an array, returning a logical
value. For example: a = b if i in [2,4,6] else c . The values are matched using deep comparison,
i.e. arrays and tuples match if their items match.

Tuples

Tuples can be constructed from any expression by enumerating the items separated by the ,
operator. For example, a,b  is a tuple, or optionally, for better legibility, a tuple can be
parenthesized, as in (a,b) .

If an expression is of tuple type, it can be unpacked by assigning it to a tuple containing identifiers
to which the tuple items are assigned. For example, if t  is a tuple of three items, then a, b, c = t
unpacks the items of the tuple to the identifiers a, b and c. The tuple on the left must  have the same
number of items as the one on the right. Fragments that have multiple results essentially return a
tuple.
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Tuple items can also be accessed by subscripting with limitations: subscripts must  be integer
literals, that is, ranges and index variables or expressions are forbidden. a, b, c = t  is equivalent
to a = t[0]; b = t[1]; c = t[2] .

Strings

Although string  is a primitive type, strings can be thought of as arrays of characters and some
operations can be defined the same way as for arrays. Strings cannot be built from characters as an
array expression, however:

¥ Strings can be concatenated using the + operator and duplicated with the *  operator.

¥ Sub-strings can be created with range indexing. When the subscript expression is a single index,
it also results in a string of a single character.

Built-in Functions

Some built-in functions are used to query information from tensors, arrays and strings. To describe
the interface of such functions, the same notation is used for convenience as for declarations.
However, these functions must  be called with a single positional argument. The ? in place of the
type specifier means that any type may be substituted (note that in these cases, it really means any
type, not just any primitive type).

¥ shape_of( x: tensor<> ) -> ( shape: integer[] )  returns the shape of a tensor x. The length of
the resulting array is the rank of the tensor. In case a non-tensor value is substituted in place of
tensor x, the empty array corresponding to the singleton shape of rank 0 is returned.

¥ length_of( x: ?[] ) -> ( length: integer )  returns the length of the array x.

¥ length_of( x: string ) -> ( length: integer )  returns the length of the string x.

¥ range_of( x: ?[] ) -> ( range: integer[] )  returns the range from 0 (inclusive) to the length of
array x (exclusive).

¥ range_of( x: string ) -> ( range: integer[] )  returns the range from 0 (inclusive) to the
length of string x (exclusive).

Furthermore, explicit type casting can be forced using the type names of primitive types as unary
functions ( scalar , integer , logical , string ):

¥ scalar( x: logical ) -> ( y: scalar )  returns 1.0  if the passed value is true  and 0.0  otherwise.

¥ scalar( x: string ) -> ( y: scalar )  returns the scalar representation of a string if it describes
a valid scalar literal value (according to the syntax), otherwise the invocation is invalid.

¥ scalar( x: integer ) -> ( y: scalar )  returns the same value as passed in, only the type is
changed.

¥ integer( x: logical ) -> ( y: integer )  returns 1 if the passed value is true  and 0 otherwise.

¥ integer( x: string ) -> ( y: integer )  returns the integer representation of a string if it
describes a valid integer literal value (according to the syntax), otherwise the invocation is
invalid.

¥ integer( x: scalar ) -> ( y: integer )  returns the passed value truncated to the closest
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smaller integer value.

¥ logical( x: integer ) -> ( y: logical )  returns false  if the passed value is 0 and true
otherwise.

¥ logical( x: scalar ) -> ( y: logical )  returns false  if the passed value is 0.0  and true
otherwise.

¥ logical( x: string ) -> ( y: logical )  returns false  if the passed string is the empty string (
'' ) and true  otherwise.

¥ string( x: ? ) -> ( y: string )  returns the string representation of any value of primitive type
according to its literal representation in the syntax.

Compile-time Branching

Compile-time branching is achieved via the syntax z = x if condition else y . The condition  must
be an expression of type logical  (thus its value is known at compile time). Furthermore, the
evaluation of x or y should  be lazy, that is, after the condition  is evaluated, only the appropriate one
of x and y should  be evaluated, this way allowing the unevaluated to be invalid as well (for
example indexing an array out of bounds), which is necessary when expressing certain
constructions such as recursion, as in the following:

fragment sum_of( items: scalar[] ) -> ( sum: scalar )
{
Ê   sum = items[0] + sum_of(items[1:]) if length_of(items) > 0 else 0.0;
}

In the above example of recursively summing items in an array, when length_of(items) == 0  both
expressions items[0]  and items[1:]  would be invalid, but are not considered because of lazy
evaluation.

Compile-time Looping

An obvious way of looping is to use recursion, as in the above example. However, it is often very
cumbersome to write and hard to understand.

A simpler way to achieve parallel looping is array comprehension , which generates an array by
iterating another one and transforming its items. In general, the expression b = [for i in a yield
f(i)]  iterates the array a and generates items by applying f  to each item i . The length of the
resulting array is equal to that of the iterated array. Multiple loop iterators may exist, such as in c =
[for i in a, j in b yield i + j] . In this case, the iterated arrays must  have the same length. The
loop iterator i  may also be an index running through a range, as in b = [for i in range_of(a)
yield f(i,a[i])] . Optionally, a condition can be provided to filter the resulting items: b = [for i in
a if c(i) yield f(i)]  outputs an item only if condition c(i)  evaluates to true . In this case, the
length of the output is equal to the number of items for which the condition is met.

Invocation Chaining

Operation invocations can be chained just like function calls in programming languages, in which
case the result of an operation is the input to another operation. As an example, the chain z =
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g(f(x), y)  is equivalent to the following sequence of invocations

t = f(x);
z = g(t,y);

In case an operation returns multiple results, the corresponding parameter of the invoked fragment
must be a tuple in order for the chaining to be valid. If the goal is to ignore some results, they must
first be explicitly unpacked, and only the relevant parameters passed to the second invocation, or
the appropriate item of the tuple must be selected via subscripting.

Note, that expressions containing multiple operators are also implicitly chained. For example a = b
+ c * d  is equivalent to a = add(b, mul(c, d)) .

3.3.4. Exported Identifiers

Certain tensors need to be referenced from outside the main description to be able to attach further
information to the graph (such as parameter data or quantization information). There are two
types of tensors that are possible to reference: variables and activation tensors.

Variables are declared with an explicit string label (see Variables ), and this label must be globally
unique (except for shared weights), hence it can be used for referencing a variable. This label is
used for example to attach tensor data to variables that are serialized.

Activation tensors in the graph body also have a globally unique identifier (the left-hand side of
assignments must have previously unused names), hence these can also be used to reference
activation tensors, for example to attach quantization information to activations.

Note, that variables can also be part of the main graph description, and hence they may be
referenced by two mechanisms (the string label of the variable definition, and the identifier name
used in the assignment).

variable42 = variable(label = 'block1/conv1/weights', ...);

In the above example, the names 'variable42' and 'block1/conv1/weights' refer to the same tensor,
albeit for different purposes.
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Chapter 4. Operations
This chapter describes the (primitive) operations that can be used to build neural network
computations. The description of operations contains

¥ The declaration of each primitive using the syntax introduced in chapter Formal Description .

¥ The description of parameters in the declaration.

¥ Argument validity constraints related to each primitive, including input-output shape relations.

¥ The semantics of the operation, that is, mathematical formulae describing how the outputs are
calculated from the inputs and the attributes of the operation.

Operations can be grouped into a few larger categories, while some operations are one-of-a-kind.
The larger groups are:

¥ Tensor Introducing Operations

¥ Element-wise Operations

¥ Sliding-Window Operations

¥ Reduce Operations

¥ Tensor Shape Operations

¥ Region-of-Interest Operations

Some operations treat the first two dimensions in a special way. The first dimension (index 0) is
considered the batch  dimension, the second (index 1) the channel  dimension. The rest of the
dimensions are called the spatial  dimensions.

4.1. Tensor Introducing Operations
The following operations introduce tensors that are not the result of a calculation, such as external
inputs to the computation or parameters like weights and biases.

4.1.1. External Data Sources

An external data source is a tensor which must be fed to the graph from the outside.

fragment external<? = scalar>(
Ê   shape: integer[] )          # the shape of the tensor
-> ( output: tensor<?> )

Argument validity

¥ Items in shape must  be strictly positive.

Result semantics

¥ The shape of output  is equal to shape. The rank of output  is equal to the length of shape.
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The content of output  is not defined by the operation. The tensor must be fed with input data before
each execution of the graph. The content of the tensor is not  expected to persist between
subsequent invocations of the computational graph.

4.1.2. Constants

A constant is a tensor that has a fixed value.

fragment constant<? = scalar>(
Ê   shape: integer[],           # the shape of the tensor
Ê   value: ?[] )                # the values to fill the tensor with
-> ( output: tensor<?> )

Argument validity

¥ Items in shape must  be strictly positive.

¥ The length of value  must  equal the volume implied by shape or must  be 1.

Result semantics

¥ The shape of output  is equal to shape. The rank of output  is equal to the length of shape.

¥ output  is filled with values such that its row-major ordering equals the items in value .

Note, that a constant tensor of singular dimensions can be simply written as a numeric literal
directly into expressions, so y = x + constant(shape = [1], value = [3.14])  is equivalent to y = x +
3.14, where x is a tensor of arbitrary shape. If the length of value  is 1, that single value is repeated,
so constant(shape = [1,3], value = [3.14])  is equivalent to constant(shape = [1,3], value =
[3.14, 3.14, 3.14]) .

4.1.3. Variables

A variable  is a tensor that may be fed an initial value, may be updated by a computation, and its
value persists between consecutive invocations of the computational graph. When a tensor is
introduced as a variable, it is possible to update it later (see Variable Updates ).

fragment variable<? = scalar>(
Ê   shape: integer[],           # the shape of the tensor
Ê   label: string )             # a label for referencing the tensor externally
-> ( output: tensor<?> )

Argument validity

¥ Items in shape must  be strictly positive.

¥ label  must not  be empty. Labels must  only contain the following characters: [a-z] , [A-Z] , [0-9] ,
_, - , . , / , \ . If a variable operation has the same label  as another variable operation in the graph
(according to case insensitive comparison), then they share the underlying data, and they must
have the same shape.
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Result semantics

¥ The shape of output  is equal to shape. The rank of output  is equal to the length of shape.

The content of output  is not defined by the operation. The tensor may be filled with data from an
external source and may be updated by update  operations. The label  argument is used to link the
result to externally stored  tensor data.

4.2. Element-wise Operations
Element-wise operations perform the same operation on each element of a tensor, irrespective of
tensor dimensions and extents. The operations can be defined by simple mathematical formulae. In
what follows, for the sake of simplicity, we will use one-dimensional indexing (index i  runs through
the whole tensor) and C style pseudo-code to define the result of each operation.

4.2.1. Unary Operations

Unary operations have a single tensor argument and return a single result.

Arithmetic operations:

fragment copy<?>( x: tensor<?> ) -> ( y: tensor<?> )
fragment neg( x: tensor<scalar> ) -> ( y: tensor<scalar> )
fragment rcp( x: tensor<scalar> ) -> ( y: tensor<scalar> )
fragment exp( x: tensor<scalar> ) -> ( y: tensor<scalar> )
fragment log( x: tensor<scalar> ) -> ( y: tensor<scalar> )
fragment abs( x: tensor<scalar> ) -> ( y: tensor<scalar> )
fragment sign( x: tensor<scalar> ) -> ( y: tensor<scalar> )

Logical operations:

fragment not( x: tensor<logical> ) -> ( y: tensor<logical> )

Rounding operations:

fragment floor( x: tensor<scalar> ) -> ( y: tensor<scalar> )
fragment ceil ( x: tensor<scalar> ) -> ( y: tensor<scalar> )
fragment round( x: tensor<scalar> ) -> ( y: tensor<scalar> )

Result semantics

¥ The shape of y is equal to that of x.

For the operation neg, the output is defined as:
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For the operation rcp , the output is defined as:

For the operation exp, the output is defined as:

For the operation log , the output is defined as:

For the operation abs, the output is defined as:

For the operation sign , the output is defined as:

For the operation floor , the output is defined as:

For the operation ceil , the output is defined as:

For the operation round, the output is defined as:

4.2.2. Binary Operations

Binary operations take two tensor arguments and produce a single result. In the basic case of
binary operations, by default, the shapes of both input tensors are the same, and the resulting
output will also have the same shape. However, binary operations also support the case when the
either operand has singleton shape in a dimension but the other operand is non-singleton; in this
case the value of the singleton dimension is repeated (broadcast) along that dimension (for example
adding a column vector to all columns of a matrix). An extreme case is a scalar operand repeated in
all dimensions.

Arithmetic operations:

fragment add( x: tensor<scalar>, y: tensor<scalar> ) -> ( z: tensor<scalar> )
fragment sub( x: tensor<scalar>, y: tensor<scalar> ) -> ( z: tensor<scalar> )
fragment mul( x: tensor<scalar>, y: tensor<scalar> ) -> ( z: tensor<scalar> )
fragment div( x: tensor<scalar>, y: tensor<scalar> ) -> ( z: tensor<scalar> )
fragment pow( x: tensor<scalar>, y: tensor<scalar> ) -> ( z: tensor<scalar> )
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Comparison operations:

fragment lt( x: tensor<scalar>, y: tensor<scalar> ) -> ( z: tensor<logical> )
fragment gt( x: tensor<scalar>, y: tensor<scalar> ) -> ( z: tensor<logical> )
fragment le( x: tensor<scalar>, y: tensor<scalar> ) -> ( z: tensor<logical> )
fragment ge( x: tensor<scalar>, y: tensor<scalar> ) -> ( z: tensor<logical> )
fragment eq( x: tensor<scalar>, y: tensor<scalar> ) -> ( z: tensor<logical> )
fragment ne( x: tensor<scalar>, y: tensor<scalar> ) -> ( z: tensor<logical> )

Logical operations:

fragment and( x: tensor<logical>, y: tensor<logical> ) -> ( z: tensor<logical> )
fragment or ( x: tensor<logical>, y: tensor<logical> ) -> ( z: tensor<logical> )

Argument validity

¥ For each dimension, the extents of x and y must  either be equal or one of them must  be
singular. Inference APIs are recommended  to support the case when broadcasting happens in
the batch  and in the spatial  dimensions ( channel  dimensions equal), and the case when
broadcasting happens in all dimensions (one of the arguments is a scalar).

Result semantics

¥ The rank of the z is the maximum of the rank of x and y. For each dimension, if the extents of x
and y are equal, the extent is carried over to z. Otherwise, the non-singular extent is carried
over to z.

¥ The computations performed by these operators are as usual (see Built-in Operators  for their
mapping to mathematical operators).

4.2.3. Select Operation

The ternary operation select  returns either of two values based on a condition (per element).

fragment select<?>(
Ê   condition: tensor<logical>,     # the condition for selecting the result
Ê   true_value: tensor<?>,          # the result when the condition is true
Ê   false_value: tensor<?> )        # the result when the condition is false
-> ( output: tensor<?> )

Argument validity

¥ For each dimension, the extents of condition , true_value  and false_value  must  either be equal
or some of them must  be singular.

Result semantics

¥ For each dimension, if the extents of condition , true_value  and false_value  are equal, the extent
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is carried over to output . Otherwise, the non-singular extent is carried over to output

The selection condition is evaluated independently for each entry (if condition  shape is not
singular). The output  equals true_value  where condition  is true  and false_value  otherwise.
Arguments of singular shape are broadcast to the shape of output .

As a special case, the condition may evaluate to true  or false  for all items (in runtime), in which
case the whole subgraph calculating true_value  or false_value  can  be omitted (in runtime), which
provides a chance for optimization (conditional execution). This is especially useful if the shape of
condition  is singular in all dimensions. For example:

fragment calculate_condition( data: tensor ) -> ( condition: tensor ) { ... }
fragment calculate_more_outputs( data: tensor ) -> ( output: tensor ) { ... }

data = ...
condition = calculate_condition(data)
output = select(condition, calculate_more_outputs(data), 0.0)

In the above example, if condition  evaluates to false , the whole calculate_more_outputs()
invocation can be omitted, which may contain an arbitrary large sub-graph.

!
Although the operation select  and the if-else  syntactic construct share
similarities, they serve different purposes; the select  operation serves run-time
branching, while the if-else  construct serves compile-time  branching (in
compositional syntax).

4.2.4. Simplifier Operations

Some convenience operations are provided for often-used element-wise operations that can be
expressed via other primitives.

fragment sqr( x: tensor<scalar> ) -> ( y: tensor<scalar> )
{
Ê   y = pow(x, 2.0);
}

fragment sqrt( x: tensor<scalar> ) -> ( y: tensor<scalar> )
{
Ê   y = pow(x, 0.5);
}

fragment rsqr( x: tensor<scalar> ) -> ( y: tensor<scalar> )
{
Ê   y = pow(x, -2.0);
}
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fragment rsqrt( x: tensor<scalar> ) -> ( y: tensor<scalar> )
{
Ê   y = pow(x, -0.5);
}

fragment log2( x: tensor<scalar> ) -> ( y: tensor<scalar> )
{
Ê   y = log(x) / log(2.0);
}

fragment min( x: tensor<scalar>, y: tensor<scalar> ) -> ( z: tensor<scalar> )
{
Ê   z = select(x < y, x, y);
}

fragment max( x: tensor<scalar>, y: tensor<scalar> ) -> ( z: tensor<scalar> )
{
Ê   z = select(x > y, x, y);
}

fragment clamp( x: tensor<scalar>, a: tensor<scalar>, b: tensor<scalar> )
-> ( y: tensor<scalar> )
{
Ê   y = max(min(x, b), a);
}

4.3. Sliding-Window Operations
Sliding-window operations come in pairs, a 'basic' version and a 'reverse' version (it could also be
called forward and backward version, however, we would like to avoid confusion with the
backward computation of back-propagation, where the backward computation of a 'reverse'
operation may be a 'basic' operation). In general, the basic operations either keep the input shape
or down-scale the input, while the reverse operations keep the input shape or up-scale it. Therefore,
to clearly denote which shape we are talking about, we will denote them down-scaled  and up-scaled,
respectively. The basic operations map from the up-scaled shape to the down-scaled shape, and the
reverse operations map from the down-scaled shape to the up-scaled shape.

Most of the parameters of sliding-window operations are common, thus they are summarized here,
and for each operation only the additional parameters are described.

Common Parameters

¥ input: tensor<scalar>  : the tensor to be filtered.
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¥ output: tensor<scalar>  : the resulting tensor.

¥ size: integer[]  : the shape of the kernel.

¥ border: string  : the mode by which the borders are handled (see below).

¥ padding: (integer,integer)[]  : the extents of the padding applied on the edges of the input. The
values are supplied separately for each dimension and both sides (may be asymmetric). An
empty array indicates that the padding extents are calculated automatically, see below.

¥ stride: integer[]  : the amount with which the kernel is displaced in input space when moving
the window.

¥ dilation: integer[]  : the amount with which the kernel entries are displaced while matching
the kernel to the input in a single input position. Dilation of 1 means that the kernel is
continuously matched to the input (no gap).

¥ output_shape: integer[]  : the reference shape for reverse operations, typically the up-scaled
shape of the input of a previous basic operation. An empty array indicates no reference shape,
so the output shape is calculated as indicated below. If output_shape is not empty, then applying
the down-scaled shape calculation to output_shape must  result in the shape of input .

The parameters size , padding, stride  and dilation  must  contain one entry for each relevant
dimension. Alternatively, the arrays padding, stride  and dilation  may be empty ( [] ). If the arrays
stride  and dilation  are empty, they are considered to be 1s in all relevant dimensions. If the array
padding is empty, then padding is calculated automatically, see below.

The padding, stride  and dilation  parameters are always interpreted in the up-scaled space (the
input space for the basic operations, the output space for reverse operations). The border  parameter
however, always effects the input values of each operation, regardless of whether it is basic or
reverse operation.

Argument Validity

¥ Items in size  must  be strictly positive. The number of required items depends on the operation.

¥ The number of required items in padding depends on the specific operation. Note, that the items
in padding can  be negative. Inference APIs are recommended  to support the cases when all
padding items are less in absolute value than the corresponding items in size .

¥ Items in stride  must  be strictly positive. The number of required items depends on the specific
operation. Inference APIs are recommended  to support the cases when all items are less or
equal to the corresponding items in size .

¥ Items in dilation  must  be strictly positive. The number of required items depends on the
specific operation. Inference APIs must  support at least the case when all items are singular.

¥ border  must  be one of the modes specified below .

Output Shape Calculation

For each dimension, the relation between up-scaled extent ( ), down-scaled extent ( ) filter size  ( ),
padding ( , where  corresponds to the padding that precedes, and  corresponds to the padding
that succeeds the data), stride  ( ) and dilation  ( ) is as follows. Define dilated filter size as

. Note, that when  then . Then the down-scaled extent is
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The nominator must  be non-negative, that is, . Furthermore, the up-scaled extent is

Note, that because the down-scaling may involve rounding, the up-scaled extent is not necessarily
equal to the one which it was down-scaled from.

Automatic Padding Calculation

Padding is automatically calculated from the other parameters in all dimensions where it is not
specified, such that . To achieve the desired down-scaled extent, define total padding as

and let the possibly asymmetric padding be defined as

Note, that for all trailing dimensions, where  and  we have  and as a result  and
.

Border Modes

The allowed border modes are as follows:

¥ 'ignore' : the border values are not considered in the calculations (such as max or average)

¥ 'constant'  : the border is considered constant, currently the only supported value is 0

¥ 'replicate' : the border is filled with the edge values replicated

¥ 'reflect' : the values are taken from the input as if it was reflected to the edge (the edge is not
duplicated)

¥ 'reflect-even' : similar to 'reflect' , but the edge is duplicated

Suppose for the sake of explanation that the input is one dimensional and has extent . Let 
denote the extended input, where the values outside the true input range are defined by the border
parameter.

If border = 'constant' , we have:

If border = 'replicate' , we have:
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